Skip to main content

Advertisement

Log in

Significance of environmental footprints for evaluating sustainability and security of development

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This contribution presents the selected categories of environmental footprints related to the planetary boundaries and threats to human security. The analysis covers the footprint family of indicators that usually consists of ecological, carbon or more precisely greenhouse gas and water footprints and also sometimes the energy footprint. The other assessed footprints that are important for ecosystem health in regard to water, health, food, and land and species security are nitrogen, phosphorus, biodiversity and land footprints, which have already transgressed the planetary boundaries and are therefore outside the safe operating space. The importance of the various footprints is discussed and the simultaneous analysis of footprints is emphasised as a major direction of research and practice. The comprehensive set of environmental impacts, e.g. set of presented footprints in this contribution, should be considered and should incorporate the burdening and unburdening concept from the life cycle perspective. Some applications of the presented environmental footprints are offered, and conclusions and remarks provided for future observation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BF:

Biodiversity footprint

BP:

British petroleum

BSI:

British Standards Institution

CCS:

Carbon (CO2) capture and storage

CF:

Carbon footprint

EC:

European Commission

EF:

Ecological footprint

ENF:

Energy footprint

ELCD:

European reference Life Cycle Database

ESRL:

Earth System Research Laboratory

FP:

Foot print

GHG:

Green house gas (emissions)

GWP:

Global warming potential

ISIS:

Institute of Science in Society

ISO:

International Organization for Standardization

LCA:

Life cycle analysis or life cycle assessment

LF:

Land footprint

NF:

Nitrogen footprint

NREL:

National Renewable Energy Laboratory

PAS:

Publicly available specification

PCA:

Principal component analysis

PF:

Phosphorus footprint

PLS-VIP:

Partial least square-variable importance in projection

SD:

Sustainable development

TNEP:

The natural edge project

UNEP:

United Nations Environment Programme

UNFCCC:

United Nations Framework Convention on Climate Change

WCED:

World Commission on Environment and Sustainable Development

WF:

Water footprint

WFN:

Water footprint network

References

  • Aivazidou E, Iakovou E, Vlachos D, Keramydas C (2013) A methodological framework for supply chain carbon footprint management. Chem Eng Trans 35:313–318. doi:10.3303/CET1335052

    Google Scholar 

  • Allen T (2008) Life cycle tools for sustainable change. Prodesign (96):52–54. http://locusresearch.com/sites/default/files/ProdesignLCTAarticleV1_1.pdf. Accessed 13 May 2015

  • Ashley K, Cordell D, Mavinic D (2011) A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere 84:737–746

    Article  CAS  Google Scholar 

  • Atkins MJ, Morrison AS, Walmsley MRW (2010) Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl Energy 87(3):982–987

    Article  Google Scholar 

  • Azapagic A (2009) Engineering for sustainable development. inpact.inp-toulouse.fr/GPE-EPIC2009/images/presentation_azapagic.pdf. Accessed 12 Mar 2015

  • Azapagic A, Perdan S (2014) Sustainable chemical engineering: dealing with “wicked” sustainability problems. AIChE J 60:3998–4007

    Article  CAS  Google Scholar 

  • Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2:919–944

    Article  Google Scholar 

  • Biermann F (2012) Planetary boundaries and earth system governance: exploring the links. Ecol Econ 81:4–9

    Article  Google Scholar 

  • Blomqvist L, Brook BW, Ellis EC, Kareiva PM, Nordhaus T, Shellenberger M (2013) Does the shoe fit? Real versus imagined ecological footprints. PLoS Biology 11(11):e1001700. doi:10.1371/journal.pbio.1001700

    Article  CAS  Google Scholar 

  • Bojarski AD, Laínez JM, Espuña A, Puigjaner L (2009) Incorporating environmental impacts and regulations in a holistic supply chains modeling: an LCA approach. Comput Chem Eng 33:1747–1759

    Article  CAS  Google Scholar 

  • BP (British Petroleum) (2014) BP statistical review of world energy June 2014. www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2014/BP-statistical-review-of-world-energy-2014-full-report.pdf. Accessed 18 Mar 2015

  • Bruckner M, Fischer G, Tramberend S, Giljum S (2015) Measuring telecouplings in the global land system: a review and comparative evaluation of land footprint accounting methods. Ecol Econ 114:11–21

    Article  Google Scholar 

  • BSI (2011) PAS 2050:2011, Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. shop.bsigroup.com/upload/Shop/Download/PAS/PAS2050.pdf. Accessed 14 Mar 2015

  • Burrows D (2011) How to measure your firm’s biodiversity footprint. The Guardian. www.theguardian.com/sustainable-business/biodiversity-footprint-new-carbon-measurement-management. Accessed 29 Aug 2014

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  Google Scholar 

  • Campbell DE, Lu H, Walker HA (2014) Relationships among the energy, emergy and money flows of the United States from 1900 to 2011. Front Energy Res 2:41. doi:10.3389/fenrg.2014.00041

    Article  Google Scholar 

  • Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6(1):1–12

    Article  CAS  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin, New York

    Google Scholar 

  • Chang D-S, Yeh L-T, Liu W (2015) Incorporating the carbon footprint to measure industry context and energy consumption effect on environmental performance of business operations. Clean Technol Environ Policy 17(2):359–371

    Article  CAS  Google Scholar 

  • Chen C-Z, Lin Z-S (2008) Multiple timescale analysis and factor analysis of energy ecological footprint growth in China 1953–2006. Energy Policy 36:1666–1678

    Article  Google Scholar 

  • Conservation on Biological Diversity (2010) Strategic plan for biodiversity 2011-2020 and the Aichi Targets. www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf. Accessed 18 April 2015

  • Conserve Energy Future (2014) Water pollution facts. www.conserve-energy-future.com/various-water-pollution-facts.php. Accessed 10 Nov 2014

  • Cordell D (2010) The Story of phosphorus, sustainability implications of global phosphorus scarcity for food security. PhD Thesis. Institute for sustainable futures, University of Technology, Sydney, Australia, and Department of water and environmental studies, Linköping University, Sweden

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Čuček L, Varbanov PS, Klemeš JJ, Kravanja Z (2012a) Total footprints-based multi-criteria optimisation of regional biomass energy supply chains. Energy 44:135–145

    Article  Google Scholar 

  • Čuček L, Klemeš J, Kravanja Z (2012b) Carbon and nitrogen trade-offs in biomass energy production. Clean Technol Environ Policy 14:389–397

    Article  CAS  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012c) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2015) Overview of environmental footprints. In: Klemeš JJ (ed) Assessing and measuring environmental impact and sustainability. Butterworth-Heinemann/Elsevier, Waltham, pp 131–193

    Google Scholar 

  • De Benedetto L, Klemeš J (2010) The environmental bill of material and technology routing: an integrated LCA approach. Clean Technol Environ Policy 12:191–196

    Article  Google Scholar 

  • de Bie S, van Dessel B (2011) Compensation for biodiversity loss, advice to the Netherlands’ Taskforce on Biodiversity and Natural Resource De Gemeynt. Klarenbeek, the Netherlands. www.gemeynt.nl/en/component/docman/doc_view/8-compensation-for-biodiversity-loss. Accessed: 3 Oct 2014

  • de Wrachien D (2003) Land use planning: a key to sustainable agriculture. In: García-Torres L, Benites J, Martínez-Vilela A, Holgado-Cabrera A (eds) Conservation agriculture. Springer, Netherlands, pp 471–483

    Chapter  Google Scholar 

  • Denholm P, Margolis RM (2008) Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 36:3531–3543

    Article  Google Scholar 

  • Díaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    Article  CAS  Google Scholar 

  • Dominguez-Ramos A, Singh B, Zhang X, Hertwich EG, Irabien A (2015) Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J Clean Prod. doi:10.1016/j.jclepro.2013.11.046

    Google Scholar 

  • Dong H, Geng Y, Sarkis J, Fujita T, Okadera T, Xue B (2013) Regional water footprint evaluation in China: a case of Liaoning. Sci Total Environ 442:215–224

    Article  CAS  Google Scholar 

  • Dormer A, Finn DP, Ward P, Cullen J (2013) Carbon footprint analysis in plastics manufacturing. J Clean Prod 51:133–141

    Article  CAS  Google Scholar 

  • EC (European Commission) (2011) Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions, Our life insurance, our natural capital: an EU biodiversity strategy to 2020 Brussels, Belgium. ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/2020/1_EN_ACT_part1_v7%5B1%5D.pdf. Accessed 2 May 2014

  • EC (European Commission) (2014a) Policies. ec.europa.eu/environment/policies_en.htm. Accessed 2 Aug 2014

  • EC (European Commission) (2014b) Climate Action, The EU Emissions Trading System (EU ETS). ec.europa.eu/clima/policies/ets/index_en.htm. Accessed 6 Nov 2014

  • EC (European Commission) (2015) EPLCA—European reference life-cycle database, joint research centre. eplca.jrc.ec.europa.eu/ELCD3. Accessed 14 Mar 2015

  • Ecoinvent Centre (2015) The ecoinvent Database, Swiss Centre for Life Cycle Inventories. www.ecoinvent.org/database/. Accessed 12 Mar 2015

  • Elms R, El-Halwagi M (2010) The effect of greenhouse gas policy on the design and scheduling of biodiesel plants with multiple feedstocks. Clean Technol Environ Policy 12:547–560

    Article  CAS  Google Scholar 

  • Ene SA, Teodosiu C, Robu B, Volf I (2013) Water footprint assessment in the winemaking industry: a case study for a Romanian medium size production plant. J Clean Prod 43:122–135

    Article  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Er-Rbib H, Bouallou C (2013) Modeling and simulation of methanation catalytic reactor for renewable electricity storage. Chem Eng Trans 35:541–546. doi:10.3303/CET1335090

    Google Scholar 

  • ESRL (Earth System Research Laboratory) (2015) Global Monitoring Division, 2015, Trends in Atmospheric Carbon Dioxide. www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 12 Mar 2015

  • Fang K, Heijungs R, de Snoo G (2013) The footprint family: comparison and interaction of the ecological, energy, carbon and water footprints. Metall Res Technol 110:77–86

    Google Scholar 

  • Fang K, Heijungs R, de Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Ind 36:508–518

    Article  Google Scholar 

  • Fang K, Heijungs R, De Snoo GR (2015) Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecol Econ 114:218–226

    Article  Google Scholar 

  • Ferng J-J (2002) Toward a scenario analysis framework for energy footprints. Ecol Econ 40:53–69

    Article  Google Scholar 

  • Fiala N (2008) Measuring sustainability: why the ecological footprint is bad economics and bad environmental science. Ecol Econ 67:519–525

    Article  Google Scholar 

  • Fiksel J, Bruins R, Gatchett A, Gilliland A, ten Brink M (2014) The triple value model: a systems approach to sustainable solutions. Clean Technol Environ Policy 16:691–702

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2011) Integrating ecological, carbon and water footprint: defining the “footprint family” and its application in tracking human pressure on the planet. Technical Document, Surrey

    Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol Ind 16:100–112

    Article  Google Scholar 

  • Galli A, Wackernagel M, Iha K, Lazarus E (2014) Ecological footprint: implications for biodiversity. Biol Conserv 173:121–132

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gerbens-Leenes W, Hoekstra A, van der Meer T (2008) The Water Footprint of bio-energy and other primary energy carriers, Value of Water Report Series No. 29. UNESCO-IHE. Delft, the Netherlands. www.waterfootprint.org/Reports/Report29-WaterFootprintBioenergy.pdf. Accessed 2 Sept 2014

  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346:234–237

    Article  CAS  Google Scholar 

  • GHG Protocol (The greenhouse gas protocol) (2011) Product Life Cycle Accounting and Reporting Standard, World Resources Institute and World Business Council for Sustainable Development. www.ghgprotocol.org/files/ghgp/Product%20Life%20Cycle%20Accounting%20and%20Reporting%20Standard.pdf. Accessed 19 April 2015

  • Giddings B, Hopwood B, O’brien G (2002) Environment, economy and society: fitting them together into sustainable development. Sustain Dev 10:187–196

    Article  Google Scholar 

  • Giljum S, Lutter S, Bruckner M, Aparcana S (2013a) State-of-play of national consumption-based indicators, A review and evaluation of available methods and data to calculate footprint-type (consumption-based) indicators for materials, water, land and carbon. Sustainable Europe Research Institute (SERI). Vienna, Austria. ec.europa.eu/environment/enveco/resource_efficiency/pdf/FootRev_Report.pdf. Accessed 03 Oct 2014

  • Giljum S, Wieland H, Bruckner M, de Schutter L, Giesecke K (2013b) Land footprint scenarios, A discussion paper including a literature review and scenario analysis on the land use related to changes in Europe’s consumption patterns. Sustainable Europe Research Institute (SERI). Vienna, Austria. www.foeeurope.org/sites/default/files/publications/seri_land_footprint_scenario_nov2013_1.pdf. Accessed 3 May 2014

  • Girard J (2014) Principles of environmental chemistry. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Gleick PH, Ajami N, Christian-Smith J, Cooley H, Donnelly K, Fulton J, Ha M-L, Heberger M, Moore E, Morrison J, Orr S, Schulte P, Srinivasan V (2014) The World’s Water Volume 8: The Biennial Report on Freshwater Resources. Island Press, Washington, USA

  • Goodland R (1995) The concept of environmental sustainability. Annu Rev Ecol Syst 26:1–24

    Article  Google Scholar 

  • Gouze P, Luquot L, Andreani M, Godard M, Peuble S (2010) In Situ Carbon Dioxide Sequestration via Mineral Carbonation: New Insights from Lab-scale Flow-through Experiments, American Geophysical Union, Fall Meeting, abstract #GC23G-08

  • GreenDelta, GmbH (2014) openLCA. www.openlca.org/. Accessed 14 Mar 2015

  • Gude VG (2015) Energy and water autarky of wastewater treatment and power generation systems. Renew Sustain Energy Rev 45:52–68

    Article  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Bondeau A, Lauk C, Müller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35:4753–4769

    Article  Google Scholar 

  • Hermann BG, Debeer L, De Wilde B, Blok K, Patel MK (2011) To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment. Polym Degrad Stab 96:1159–1171

    Article  CAS  Google Scholar 

  • Hertel T (2015) The challenges of sustainably feeding a growing planet. Food Secur 7:1–14

    Article  Google Scholar 

  • Hertwich EG, Peters GP (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420

    Article  CAS  Google Scholar 

  • Hill R, Halamish E, Gordon IJ, Clark M (2013) The maturation of biodiversity as a global social–ecological issue and implications for future biodiversity science and policy. Futures 46:41–49

    Article  Google Scholar 

  • Hoekstra AY (2008) Water Neutral: Reducing and Offsetting the Impacts of Water Footprints, Value of Water Research Report Series No. 28. UNESCO-IHE Institute for Water Education. Delft, the Netherlands. doc.utwente.nl/77202. Accessed 6 Aug 2014

  • Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21:35–48

    Article  Google Scholar 

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117

    Article  CAS  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. water Footprint Network. Earthscan, L. www.waterfootprint.org/downloads/TheWaterFootprintAssessmentManual.pdf. Accessed 2 Sept 2014

  • Hundal M (2000) Life cycle assessment and design for the environment, international design conference—design 2000. Dubrovnik, Croatia

    Google Scholar 

  • Ibáñez-Forés V, Bovea MD, Azapagic A (2013) Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. J Clean Prod 51:162–176

  • ISIS (Institute of Science in Society) (2012) Using Water Sustainably. www.i-sis.org.uk/Using_Water_Sustainably.php. Accessed 6 Dec 2014

  • ISO 14046 (2014) Environmental Management—Water Footprint—Principles, requirements and guidelines. The International Organization for Standardization, Geneva

    Google Scholar 

  • ISO/TS 14067 (2013) Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification and communication. The International Organization for Standardization, Geneva

    Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen S, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sustain Dev 33:651–662

    Article  Google Scholar 

  • Jeswani HK, Azapagic A (2011) Water footprint: methodologies and a case study for assessing the impacts of water use. J Clean Prod 19:1288–1299

    Article  Google Scholar 

  • Jeswani H, Azapagic A (2015) Is e-reading environmentally more sustainable than conventional reading? Clean Technol Environ Policy. doi:10.1007/s10098-10014-10851-10093

    Google Scholar 

  • Jeswani HK, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. J Clean Prod 18:120–127

    Article  Google Scholar 

  • Jørgensen SE, Nielsen SN, Mejer H (1995) Emergy, environ, exergy and ecological modelling. Ecol Model 77:99–109

    Article  Google Scholar 

  • Kelly TD, Matos GR (2014) Historical statistics for mineral and material commodities in the United States (2014 version): U.S. Geological Survey Data Series 140. minerals.usgs.gov/minerals/pubs/historical-statistics. Accessed 14 Mar 2015

  • Kitzes J, Peller A, Goldfinger S, Wackernagel M (2007) Current methods for calculating national ecological footprint accounts. Sci Environ Sustain Soc 4:1–9

    Google Scholar 

  • Klemeš J (2015a) Assessing and measuring environmental impact and sustainability. Clean Technol Environ Policy 17:577–578

    Article  CAS  Google Scholar 

  • Klemeš JJ (2015b) Assessing and measuring environmental impact and sustainability. Butterworth-Heinemann/Elsevier, Waltham, pp 131–193

  • Klemeš JJ, Kravanja Z (2013) Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). Curr Opin Chem Eng 2(4):461–474

    Article  Google Scholar 

  • Klemeš JJ, Varbanov PS, Kravanja Z (2013) Recent developments in process integration. Chem Eng Res Des 91(10):2037–2053

    Article  CAS  Google Scholar 

  • Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Article  CAS  Google Scholar 

  • Kravanja Z, Čuček L (2013) Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Appl Energy 101:67–80

    Article  Google Scholar 

  • Kurki S, Wilenius M (2015) Organisations and the sixth wave: are ethics transforming our economies in the coming decades? Futures. doi:10.1016/j.futures.2014.09.001

    Google Scholar 

  • Land Commodities (2014) Farmland Supply and Investment Fundamentals. www.landcommodities.com/farmland-supply-and-investment-fundamentals. Accessed 18 Mar 2015

  • Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1:40–66

    Article  Google Scholar 

  • Lehsten D (2014) Exploring global change drivers and their effects on vegetation, dynamics and biodiversity, Geobiosphere Science Centre, Lund University, Sweden. www.nateko.lu.se/courses/ngen03/NGEN03_Global_changeI_2014.pdf. Accessed 16 Mar 2015

  • Maggio G, Cacciola G (2012) When will oil, natural gas, and coal peak? Fuel 98:111–123

    Article  CAS  Google Scholar 

  • Magoha P (2002) Footprints in the wind?: environmental impacts of wind power development. Refocus 3:30–33

    Google Scholar 

  • Martineau RJ, Novello DP (2004) The clean air act handbook. American Bar Association, Chicago

    Google Scholar 

  • McElhatton A, Pizzuto A (2012) Waste and its rational management. In: McElhatton A, do Amaral Sobral PJ (eds) Novel technologies in food science: their impact on products, consumer trends and the environment. Springer, New York, pp 3–19

    Chapter  Google Scholar 

  • McEwan C, Hughes A, Bek D (2014) Futures, ethics and the politics of expectation in biodiversity conservation: a case study of South African sustainable wildflower harvesting. Geoforum 52:206–215

    Article  Google Scholar 

  • McLellan R, Iyengar L, Jeffries B, Oerlemans N (2014) Living planet report 2014: species and spaces, people and places. WWF International, Gland

    Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA: part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

    Article  CAS  Google Scholar 

  • Moldan B, Janoušková S, Hák T (2012) How to understand and measure environmental sustainability: indicators and targets. Ecol Ind 17:4–13

    Article  Google Scholar 

  • Motavalli J (1999) Dr. Nafis Sadik, The UN’s Prescription for Family Planning. www.emagazine.com/includes/print-article/magazine-archive/8090/. Accessed 28 April 2014

  • Mukherjee R, Sengupta D, Sikdar SK (2013) Parsimonious use of indicators for evaluating sustainability systems with multivariate statistical analyses. Clean Technol Environ Policy 15(4):699–706

    Article  Google Scholar 

  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels Y, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York

  • Nag A (2008) Textbook of agricultural biotechnology. PHI Learning Private Limited, New Delhi

    Google Scholar 

  • National League of Cities, Sustainable Cities InstituteSM (2013) Land Use and Planning. www.sustainablecitiesinstitute.org/topics/land-use-and-planning. Accessed: 6 Dec 2014

  • Nijdam D, Rood T, Westhoek H (2012) The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37:760–770

    Article  Google Scholar 

  • NREL (National Renewable Energy Laboratory) (2012) U.S. Life Cycle Inventory Database. www.nrel.gov/lci/. Accessed 13 Mar 2015

  • Padgett JP, Steinemann AC, Clarke JH, Vandenbergh MP (2008) A comparison of carbon calculators. Environ Impact Assess Rev 28:106–115

    Article  Google Scholar 

  • Parker CL, Shapiro SM (2008) Climate chaos: your health at risk, what you can do to protect yourself and your family. Praeger Publishers, Westport

    Google Scholar 

  • PE International (2015) LCA databases. www.gabi-software.com/international/databases/gabi-databases. Accessed 13 Mar 2015

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  Google Scholar 

  • Pierer M, Winiwarter W, Leach AM, Galloway JN (2014) The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy Part 1 49:128–136

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  Google Scholar 

  • Pirages D, Cousins K (2008) From resource scarcity to ecological security: exploring new limits to growth. Academic Foundation, New Delhi

    Google Scholar 

  • PRé Consultants (2015) SimaPro World’s Leading LCA Software. www.pre-sustainability.com/simapro. Accessed 10 Mar 2015

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  CAS  Google Scholar 

  • Quantis (2014) Quantis Water DataBase—A unique database to manage your water footprint. www.quantis-intl.com/microsites/waterdatabase.php. Accessed 14 Mar 2015

  • Ramachandra TV, Aithal BH, Sreejith K (2015) GHG footprint of major cities in India. Renew Sustain Energy Rev 44:473–495

    Article  Google Scholar 

  • Reay D, Smith P, van Amstel A (2010) Methane and climate change. Earthscan, London

    Google Scholar 

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 4:121–130

    Article  Google Scholar 

  • Richardson K, Steffen W, Liverman D (2011) Climate change: global risks, challenges and decisions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change 20:113–120

    Article  Google Scholar 

  • Ridoutt BG, Page G, Opie K, Huang J, Bellotti W (2014) Carbon, water and land use footprints of beef cattle production systems in southern Australia. J Clean Prod 73:24–30

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  CAS  Google Scholar 

  • Rodriguez CI, Ruiz de Galarreta VA, Kruse EE (2015) Analysis of water footprint of potato production in the pampean region of Argentina. J Clean Prod 90:91–96

    Article  Google Scholar 

  • Scholz RW, Ulrich AE, Eilittä M, Roy A (2013) Sustainable use of phosphorus: a finite resource. Sci Total Environ 461–462:799–803

    Article  CAS  Google Scholar 

  • Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M (2013) Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Policy 15:525–536

    Article  CAS  Google Scholar 

  • Słowiński G (2006) Some technical issues of zero-emission coal technology. Int J Hydrog Energy 31:1091–1102

    Article  CAS  Google Scholar 

  • Smart Energy Living (2013) The Smart Energy Living® Pyramid. smartenergyliving.org/index.cfm/ID/4/Resources. Accessed 6 Dec 2014

  • Smil V (1997) Global population and the nitrogen cycle. Sci Am 277:76–81

    Article  CAS  Google Scholar 

  • Sobhani R, Abahusayn M, Gabelich CJ, Rosso D (2012) Energy footprint analysis of brackish groundwater desalination with zero liquid discharge in inland areas of the Arabian Peninsula. Desalination 291:106–116

    Article  CAS  Google Scholar 

  • Sodhi NS, Brook BW, Bradshaw CJ (2009) Causes and consequences of species extinctions. Princeton Guide Ecol 28:514–520

    Google Scholar 

  • Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Change Biol 21:32–47

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi:10.1126/science.1259855

    Google Scholar 

  • Stevens CJ, Leach AM, Dale S, Galloway JN (2014) Personal nitrogen footprint tool for the United Kingdom. Environ Sci 16:1563–1569

    CAS  Google Scholar 

  • Stoeglehner G, Narodoslawsky M (2009) How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective. Bioresour Technol 100:3825–3830

    Article  CAS  Google Scholar 

  • Stoeglehner G, Levy JK, Neugebauer GC (2005) Improving the ecological footprint of nuclear energy: a risk-based lifecycle assessment approach for critical infrastructure systems. Int J Crit Infrastruct 1:394–403

    Article  Google Scholar 

  • Tjan W, Tan RR, Foo DCY (2010) A graphical representation of carbon footprint reduction for chemical processes. J Clean Prod 18(9):848–856

    Article  CAS  Google Scholar 

  • TNEP (The Natural Edge Project) (2004) TNEP International Keynote Speaker Tours. www.naturaledgeproject.net/Keynote.aspx. Accessed 6 Dec 2014

  • Toderoiu F (2010) Ecological footprint and biocapacity-methodology and regional and national dimensions. Agric Eco Rural Dev 2:213–238

    Google Scholar 

  • Tonder DR, Tonder G, Donovan T, Jensen P (2012) Permeable paver and manufacturing method therefor. Patent CA 2746731 C

  • Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Sharon KC, Dobson AP, Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P, Wolfe AH (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246

    Article  Google Scholar 

  • Tsoskounoglou M, Ayerides G, Tritopoulou E (2008) The end of cheap oil: current status and prospects. Energy Policy 36:3797–3806

    Article  Google Scholar 

  • Ubando A, Culaba A, Aviso K, Tan R (2013) Simultaneous carbon footprint allocation and design of trigeneration plants using fuzzy fractional programming. Clean Technol Environ Policy 15:823–832

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2007) Water, section B, state-and-trends of the environment: 1987–2007. Global environment outlook 4: environment for development, Valetta, pp 115–156

    Google Scholar 

  • UNFCCC (United Nations Framework Convention on Climate Change) (1998) Kyoto Protocol to the United Nations Framework Convention on Climate Change. unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 12 April 2014

  • van den Bergh JCJM, Grazi F (2014) Ecological Footprint Policy? Land Use as an Environmental Indicator. J Ind Ecol 18:10–19

    Article  Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Change 20:428–439

    Article  Google Scholar 

  • Vanham D, Bidoglio G (2013) A review on the indicator water footprint for the EU28. Ecol Ind 26:61–75

    Article  Google Scholar 

  • Varbanov PS, Seferlis P (2014) Process innovation through Integration approaches at multiple scales: a perspective. Clean Techn Environ Policy 16:1229–1234

    Article  Google Scholar 

  • Verburg PH, Mertz O, Erb K-H, Haberl H, Wu W (2013) Land system change and food security: towards multi-scale land system solutions. Curr Opin Environ Sustain 5:494–502

    Article  Google Scholar 

  • Vujanović A, Čuček L, Pahor B, Kravanja Z (2014) Multi-objective synthesis of a company’s supply-network by accounting for several environmental footprints. Process Saf Environ Prot 92:456–466

    Article  CAS  Google Scholar 

  • Walmsley M, Liu X, Varbanov PS, Klemes JJ (2015) Environmental footprint comparison between dairy, rain and meat products in California. Chem Eng Trans 43:109–114

  • Wang Y (2012) China’s Policy of Sustainable Development: Practices and Challenges, 2012 Berlin Conference on Evidence for Sustainable Development: Evidence for Sustainable Development. www.berlinconference.org/2012/wp-content/uploads/2012/10/Wang-Yi_Chinas-Policy-of-Sustainable-Development.pdf. Accessed 14 Mar 2015

  • Wang Z, Huang K, Yang S, Yu Y (2013) An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China. J Clean Prod 42:172–179

    Article  Google Scholar 

  • WCED (World Commission on Environment and Sustainable Development) (1987) Our common future (The Brundtland report). Oxford University Press, Oxford

    Google Scholar 

  • WFN (Water Footprint Network) (2015a) Water Footprint, The Global Water Footprint Standard. www.waterfootprint.org/?page=files/GlobalWaterFootprintStandard. Accessed 14 Mar 2015

  • WFN (Water Footprint Network) (2015b) Water Footprint, WaterStat. www.waterfootprint.org/?page=files/WaterStat. Accessed 14 Mar 2015

  • Wiesmann U, Choi IS, Dombrowski EM (2007) Fundamentals of biological wastewater treatment. Wiley, Weinheim

    Google Scholar 

  • Worldometers—real time world statistics, 2015. Current World Population. www.worldometers.info/world-population/wpc.php?utm_expid=4939992-7.scuhn054Q5WXvFD9uRG9Xw.2&utm_referrer=http%3A%2F%2Fwww.google.si%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D2%26ved%3D0CDgQFjAB%26url%3Dhttp%253A%252F%252Fwww.worldometers.info%252Fworld-population%252F%26ei%3Dp9ViU7mROfLH7Aan0oHwAw%26usg%3DAFQjCNErbPyUCHWnx-PRFhnobEtJRV06Mg%26sig2%3DCnTCiGUgjkEdU5NefXkphA%26bvm%3Dbv.65788261%2Cd.ZGU. Accessed 12 Mar 2015

  • Wu X, Hu S, Mo S (2013) Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems. J Clean Prod 54:115–124

    Article  CAS  Google Scholar 

  • Zaccai E (2012) Over two decades in pursuit of sustainable development: influence, transformations, limits. Environ Dev 1:79–90

    Article  Google Scholar 

  • Zhao S, Li Z, Li W (2005) A modified method of ecological footprint calculation and its application. Ecol Model 185:65–75

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the EC FP7 project ‘ENER/FP7/296003/EFENIS ‘Efficient Energy Integrated Solutions for Manufacturing Industries—EFENIS’, from Slovenian Research Agency (Program No. P2-0032) and from the Hungarian State and the European Union under project TÁMOP-4.2.2/A-11/1/KONV-2012-0072—Design and optimisation of modernisation and efficient operation of energy supply and utilisation systems using renewable energy sources and ICTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čuček.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čuček, L., Klemeš, J.J., Varbanov, P.S. et al. Significance of environmental footprints for evaluating sustainability and security of development. Clean Techn Environ Policy 17, 2125–2141 (2015). https://doi.org/10.1007/s10098-015-0972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0972-3

Keywords

Navigation