Skip to main content

Advertisement

Log in

Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

CO2 capture from coal-fired power plants is necessary for continued use of coal as a fuel. Proven CO2 capture techniques such as amine absorption and oxyfuel combustion entail significant energy penalty leading to considerable decrease in the net thermal efficiency of the power plant. Recent studies of high-ash Indian coals show that CO2 has sufficient reactivity for coal gasification in temperature ranges of interest to IGCC. Against this background, we analyse in the present study, a new power plant layout which uses part of the sequestered flue gas stream for high-pressure gasification of the coal within the framework of an IGCC power plant with CO2 capture. Detailed thermodynamic calculations of the new plant layout, referred to here as Oxy-RFG-IGCC-CC, using commercial power plant simulation software show that the optimized Oxy-RFG-IGCC-CC plant with CO2 capture produces power at an overall thermal efficiency of 34.2%, which is nearly the same as that of current generation of pulverized coal boiler-based power plants without CO2 capture or that of a conventional IGCC with post-combustion capture. The proposed simpler layout is also 1.9% more efficient than a comparable CO2-capture-enabled IGCC plant that uses steam for coal gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann JM, Kanniche M, Bouallou C (2009) Reforming natural gas for CO2 pre-combustion capture in combined cycle power plant. Clean Technol Environ Policy 11:67–76

    Article  CAS  Google Scholar 

  • Aranda G, Grootjes AJ, Van der Meijden CM, Van der Meijden A, Gupta DF, Sonde RR, Poojari S, Mitra CB (2016) Conversion of high-ash coal under steam and CO2 gasification conditions. Fuel Process Technol 141:16–30

    Article  CAS  Google Scholar 

  • Basavaraja RJ, Jayanti S (2015) Comparative analysis of four gas-fired, carbon capture-enabled power plant layouts. Clean Technol Environ Policy 17(8):2143–2156

    Article  CAS  Google Scholar 

  • Berstad D, Anantharaman R, Neksa P (2013) Low temperature CCS from an IGCC power plant and comparison with physical solvents. Energy Procedia 37:2204–2211

    Article  CAS  Google Scholar 

  • Butalov I, Klemes JJ (2011) Clean fuel technologies and clean and reliable energy: a summary. Clean Techn Environ Policy 13:543–546

    Article  Google Scholar 

  • Chaiwatanodom P, Vivanpatarakij S, Assabumrungrat S (2014) Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production. Appl Energy 114:10–17

    Article  CAS  Google Scholar 

  • Chavan P, Datta S, Saha S, Sahu G, Sharma T (2012) Influence of high ash Indian coals in fluidized bed gasification under different operating conditions. Solid Fuel Chem 46:108–113

    Article  CAS  Google Scholar 

  • Cormos CC (2012) Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 42:434–445

    Article  CAS  Google Scholar 

  • Cycle-Tempo Reference Manual (2016) Delft University of Technology. http://www.Asymptote.nl/software/cycle-tempo/

  • Datta S, Sarkar P, Chavan P, Saha S, Sahu G, Sinha AK, Saxena VK (2015) Agglomeration behaviour of high ash Indian coals in fluidized bed gasification pilot plant. Appl Therm Eng 86:222–228

    Article  CAS  Google Scholar 

  • Davison J (2007) Performance and costs of power plants with capture and storage of CO2. Energy 32:1163–1176

    Article  CAS  Google Scholar 

  • Gomez A, Silbermann R, Mahinpey N (2014) A comprehensive experimental procedure for CO2 coal gasification: is there really a maximum reaction rate? Appl Energy 124:73–81

    Article  CAS  Google Scholar 

  • Hetland J (2009) Assessment of pre-combustion decarbonisation schemes for polygeneration from fossil fuels. Clean Technol Environ Policy 11:37–48

    Article  CAS  Google Scholar 

  • Higman C (2013) State of the gasification industry: the updated worldwide gasification database. In: Gasification technologies conference. International Pittsburgh coal conference, Sept 16–19

  • Hu Y, Li H, Yan J (2010) Integration of evaporative gas turbine with oxy-fuel combustion for carbon dioxide capture. Int J Green Energy 7:615–631

    Article  CAS  Google Scholar 

  • Huang Y, Liu L, Ma X, Pan X (2015) Abatement technology investment and emissions trading system: a case of coal-fired power industry of Shenzhen, China. Clean Techn Environ Policy 17:811–817

    Article  CAS  Google Scholar 

  • Iyengar RK, Haque R (1991) Gasification of high-ash Indian coals for power generation. Fuel Process Technol 27:247–262

    Article  CAS  Google Scholar 

  • Jayanti S, Kareemulla D (2016) Detailed plant layout studies of oxy-enriched CO2 pulverized coal combustion-based power plant with CO2 environment. Clean Technol Environ Policy 18:1985–1996

    Article  CAS  Google Scholar 

  • Jayaraman K, Gokalp I, Bonifaci E, Merlo N (2015) Kinetics of steam and CO2 gasification of high ash coal-char produced under various heating rates. Fuel 154:370–379

    Article  CAS  Google Scholar 

  • Karmakar MK, Mandal J, Haldar S, Chatterjee PK (2013) Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk. Fuel 111:584–591

    Article  CAS  Google Scholar 

  • King WEH (1981) Coal gasification. Fuel 60:803–808

    Article  CAS  Google Scholar 

  • Krishnudu T, Madhusudhan B, Narayan Reddy S, Seshagiri Rao K, Vaidyeswaran R (1989) Moving bed pressure gasification of some Indian coals. Fuel Process Technol 23:233–256

    Article  CAS  Google Scholar 

  • Lee JC, Lee HH, Joo YJ, Lee CH, Oh M (2014) Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier. Energy 64:58–68

    Article  Google Scholar 

  • Liszka M, Tuka J (2012) Parametric study of GT and ASU integration in case of IGCC with CO2 removal. Energy 45:151–159

    Article  CAS  Google Scholar 

  • Liszka M, Malik T, Budnik M, Ziebik A (2013) Comparison of IGCC (integrated gasification combined cycle) and CFB (circulating fluidized bed) cogeneration plants equipped with CO2 removal. Energy 58:86–96

    Article  CAS  Google Scholar 

  • Loha C, Chattopadhyay H, Chatterjee PK (2011) Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk. Energy 36:4063–4071

    Article  CAS  Google Scholar 

  • Majoumerd MM, Raas H, De S, Assadi M (2014) Estimation of performance variation of future generation IGCC with coal quality and gasification process—simulation results of EU H2-IGCC project. Appl Energy 113:452–462

    Article  CAS  Google Scholar 

  • Minchener AJ (2005) Coal gasification for advanced power generation. Fuel 84:2222–2235

    Article  CAS  Google Scholar 

  • Mondal P, Dang GS, Garg MO (2011) Syngas production through gasification and cleanup for downstream applications—recent developments. Fuel Process Technol 92:1395–1410

    Article  CAS  Google Scholar 

  • Naidu VS, Aghalayam P, Jayanti S (2016) Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim 123:467–478

    Article  CAS  Google Scholar 

  • Ng KS, Zhang N, Sadhukhan J (2012) Decarbonised coal energy system advancement through CO2 utilisation and polygeneration. Clean Technol Environ Policy 144:443–451

    Article  CAS  Google Scholar 

  • Oboirien BO, Engelbrecht AD, North BC, du Cann VM, Verryn S, Falcon R (2011) Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification. Fuel Process Technol 92(4):735–742

    Article  CAS  Google Scholar 

  • Oki Y, Inumaru J, Hara S, Kobayashi M, Watanabe H, Umemoto S, Makino H (2011) Development of oxy-fuel IGCC system with CO2 recirculation for CO2 capture. Energy Procedia 4:1066–1073

    Article  CAS  Google Scholar 

  • Ozturk M, Dincer I (2013) Thermodynamic assessment of an integrated solar power tower and coal gasification system for multi-generation purposes. Energy Convers Manag 76:1061–1072

    Article  CAS  Google Scholar 

  • Promes EJO, Woudstra T, Schoenmakers L, Oldenbroek V, Thallam Thattai A, Aravind PV (2015) Thermodynamic evaluation and experimental validation of 253MWe integrated coal gasification combined cycle power plant in Buggenum, Netherlands. Appl Energy 155:181–194

    Article  CAS  Google Scholar 

  • Renganathan T, Yadav MV, Pushpavanam S, Voolapalli RK, Cho YS (2012) CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis. Chem Eng Sci 83:159–170

    Article  CAS  Google Scholar 

  • Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671

    Article  CAS  Google Scholar 

  • Satyam Naidu V, Aghalayam P, Jayanti S (2016) Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin. Bioresource Technology 209:157–165

    Article  CAS  Google Scholar 

  • Seepana S, Jayanti S (2012) Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals. Fuel 102:32–40

    Article  CAS  Google Scholar 

  • Sofia D, Coca Llano P, Giuliano A, Iborra Hernández M, García Peña F, Barletta D (2014) Co-gasification of coal-petcoke and biomass in the Puertollano IGCC power plant. Chem Eng Res Des 92:1428–1440

    Article  CAS  Google Scholar 

  • Suresh MVJJ, Reddy KS, Kolar AK (2010) 3-E analysis of advanced power plants based on high ash coal. Int J Energy Res 34:716–735

    CAS  Google Scholar 

  • The Climate Modelling Forum (2009) Results of five climate modelling studies. Ministry of environment forests, Government of India, New Delhi

    Google Scholar 

  • Wang M, Liu G, Wui CW (2017) Optimization of IGCC gasification unit based on the novel simplified equilibrium model. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-017-1406-1

    Article  Google Scholar 

  • Ziębik A, Malik T, Liszka M (2015) Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification. Energy 92(Part 2):179–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (VSN) would like to acknowledge the financial support received from a project on Advanced Coal Technologies funded by the Department of Science and Technology of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivas Jayanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyam Naidu, V., Aghalayam, P. & Jayanti, S. Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification. Clean Techn Environ Policy 20, 1207–1218 (2018). https://doi.org/10.1007/s10098-018-1544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1544-0

Keywords

Navigation