Skip to main content
Log in

Applicability of enzymes produced from different biotic species for biodegradation of textile dyes

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The industrial wastewater contains a large amount of toxic pollutants that cause severe biotic risk and deterioration of environmental quality when discharged untreated/partially treated. Among the industrial sectors, the colourant industry-produced wastewater has more complex and hazardous composition in terms of toxicity of pollutants. In the recent past, numerous bioremediation techniques based on whole cells (bacteria, fungi and plants) or enzymes have been investigated for the treatment of dye-contaminated wastewater. The enzyme-driven treatment system has been found to be an effective for achieving satisfactory decolourization of dye-contaminated wastewater in less time, cost, labour and ecological risk. The enzyme-mediated decolourization of dye occurs through either degradation or biotransformation mechanism under optimal environmental conditions. The enzyme activity is limited by the operational factors such as reactivity of dye, pH, temperature, co-substrate and electron donor. In this regard, the present paper reviews the potential of enzymes, extracted from different biota (such as bacteria, fungi, algae and plants), to decolourize dyes from contaminated wastewater. It has been observed that the enzyme activity varies with the class of enzyme, its source and targeted substrate. The enzymes belonging to the class oxidoreductase are chief biological agents involved in bioremediation of textile dyes. The peroxidase enzymes are found to be very effective against wide classes of industrial dyes, with more tolerability to high temperature ~ 60 °C and wide range of operational pH 3–11. These enzymes are easily available as it can be extracted from bacteria, fungi, algae and plants. It has been observed that the dye decolourization efficiency of enzymes is higher in an immobilized state than in soluble form.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Paulo AC, Gubitz GM (2000) Decolourization and detoxification of textile dyes with a laccase from Trametes hirsuta. App Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Ali M, Husain Q, Sultana S, Ahmad M (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye. Chemosphere 202:198–207

    Article  CAS  Google Scholar 

  • Almaguer MA, Carpio RR, Alves TLM, Bassin JP (2018) Experimental study and kinetic modelling of the enzymatic degradation of the azo dye Crystal Ponceau 6R by turnip (Brassica rapa) peroxidase. J Environ Chem Eng 6:610–615

    Article  CAS  Google Scholar 

  • Arabaci G, Usluoglu A (2014) The enzymatic decolourization of textile dyes by the immobilized polyphenol oxidase from quince leaves. Sci World J. https://doi.org/10.1155/2014/685975

    Article  Google Scholar 

  • Arica MY, Altıntas B, Bayramoglu G (2009) Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads: application for textile dye degradation. Bioresour Technol 100:665–669

    Article  CAS  Google Scholar 

  • Ashrafi SD, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA (2013) The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. Int Biodeterior Biodegrad 85:173–181

    Article  CAS  Google Scholar 

  • Baldev E, Mubarakali D, Ilavarasi A, Pandiaraj D, Ishack KASS, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B Biointerfaces 105:207–214

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M (2015) Dye decolourization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnol 15:111

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Shah SZH, Hu H, Wang W, Zhang X (2016) Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J Environ Manag 183:836–842

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2017) Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci Total Environ 575:1352–1360

    Article  CAS  Google Scholar 

  • Bilal M, Rasheed T, Zhao Y, Iqbal HMN (2019) Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 124:742–749

    Article  CAS  Google Scholar 

  • Bisswanger H (2014) Enzyme assays. Perspect Sci 1:41–55

    Article  Google Scholar 

  • Blánquez A, Rodríguez J, Brissos V, Mendes S, Martins LO, Ball AS, Arias ME, Hernández M (2018) Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J Bio Sci. https://doi.org/10.1016/j.sjbs.2018.05.020

    Article  Google Scholar 

  • Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environ Sci 1:6

    Google Scholar 

  • Champagne PP, Ramsay JA (2007) Reactive blue 19 decolouration by laccase immobilized on silica beads. Appl Microbiol Biotechnol 77:819–823

    Article  CAS  Google Scholar 

  • Chandanshive VV, Rane NR, Gholave AR, Patil SM, Jeon BH, Govindwar SP (2016) Efficient decolourization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environ Res 150:88–96

    Article  CAS  Google Scholar 

  • Chatha SAS, Asgher M, Iqbal HMN (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res 24:14005–14018

    Article  Google Scholar 

  • Chaudhari AU, Tapase SR, Markad VL, Kodam KM (2013) Simultaneous decolorization of reactive Orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A. J Hazard Mater 262:580–588

    Article  CAS  Google Scholar 

  • Chiong T, La SY, Lek ZH, Koh BY, Danquah MK (2016) Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. J Environ Chem Eng 4:2500–2509

    Article  CAS  Google Scholar 

  • Cristovao RO, Tavares APM, Brigida AL, Loureiro JM, Boaventura RAR, Macedo EA, Coelho MAZ (2011) Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J Mol Catal B Enzym 72:6–12

    Article  CAS  Google Scholar 

  • Das A, Mishra S (2017) Removal of textile dye reactive green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng 5:612–627

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegrad 63:699–704

    Article  CAS  Google Scholar 

  • Gomare SS, Tamboli DP, Kagalkar AN, Govindwar SP (2009) Eco-friendly biodegradation of a reactive textile dye Golden Yellow HER by Brevibacillus laterosporus MTCC 2298. Int Biodeterior Biodegrad 63:582–586

    Article  CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacreriol 176:1339–1347

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolourization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  • Imran M, Arshad M, Negmd F, Khalid A, Shaharoona B, Hussain S, Nadeem SM, Crowley DE (2016) Yeast extract promotes decolourization of azo dyes by stimulating azoreductase activity in Shewanella sp. strainIFN4. Ecotoxicol Environ Saf 124:42–49

    Article  CAS  Google Scholar 

  • Jiang Y, Tang W, Gao J, Zhou L, He Y (2014) Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzyme Microb Technol 55:1–6

    Article  CAS  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199

    Article  CAS  Google Scholar 

  • Kadam SK, Chandanshive VV, Rane NR, Patil SM, Gholave AR, Khandare RV, Bhosale AR, Jeon BH, Govindwar SP (2018) Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: an in situ treatment, anatomical studies and toxicity evaluation. Environ Res 160:1–11

    Article  CAS  Google Scholar 

  • Kagalkar AN, Jagtap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresour Technol 100:4104–4110

    Article  CAS  Google Scholar 

  • Kagalkar AN, Khandare RV, Govindwar SP (2015) Textile dye degradation potential of plant laccase significantly enhances upon augmentation with redox mediators. RSC Adv 5:80505

    Article  CAS  Google Scholar 

  • Kalsoom U, Bhatti HN, Asgher M (2015) Characterization of plant peroxidases and their potential for degradation of dyes: a review. Appl Biochem Biotechnol 176:1529–1550

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  CAS  Google Scholar 

  • Karatay SE, Kılıc NK, Dönmez G (2015) Removal of Remazol Blue by azoreductase from newly isolated bacteria. Ecol Eng 84:301–304

    Article  Google Scholar 

  • Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalene sulfonic acid degradation pathway of Sphingomonas sp. strain BN6. App Environ Microbiol 63:3684–3690

    CAS  Google Scholar 

  • Khan N, Husain Q (2018) Continuous degradation of Direct Red 23 by calcium pectate–bound Ziziphus mauritiana peroxidase: identification of metabolites and degradation routes. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3847-4

    Article  Google Scholar 

  • Khataee AR, Zarei M, Dehghan G, Ebadi E, Pourhassan M (2011) Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: modeling of key factors by neural network. J Taiwan Inst Chem Eng 42:380–386

    Article  CAS  Google Scholar 

  • Khataee AR, Movafeghi A, Torbati S, Lisar SYS, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298

    Article  CAS  Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. Strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. App Environ Microbiol 63:3691–3694

    CAS  Google Scholar 

  • Kulkarni AN, Watharkar AD, Rane NR, Jeon BH, Govindwar SP (2018) Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicol Environ Saf 148:17–25

    Article  CAS  Google Scholar 

  • Kurade MB, Waghmode TR, Khandare RV, Jeon BH, Govindwar SP (2016) Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng 121:442–449

    Article  CAS  Google Scholar 

  • Lade HS, Waghmode TR, Kadam AA, Govindwar SP (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107

    Article  CAS  Google Scholar 

  • Lade H, Govindwar S, Paul D (2015) Mineralization and detoxification of the carcinogenic azo dye congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int J Environ Res Public Health 12:6894–6918

    Article  CAS  Google Scholar 

  • Levin L, Forchiassin F, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Proc Biochem 40:1381–1387

    Article  CAS  Google Scholar 

  • López C, Valade AG, Combourieu B, Mielgoa I, Bouchon B, Lema JM (2004) Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry. Anal Biochem 335:135–149

    Article  CAS  Google Scholar 

  • Ma X, Liu L, Li Q, Liu Y, Yi L, Ma L, Zhai C (2017) High-level expression of a bacterial laccase, CueO from Escherichia coli K12 in Pichia pastoris GS115 and its application on the decolorization of synthetic dyes. Enzyme Microb Technol 103:34–41

    Article  CAS  Google Scholar 

  • Ma HF, Meng G, Cui BK, Si J, Dai YC (2018) Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: laccase immobilization and characterization. Chem Eng Res Design 132:664–676

    Article  CAS  Google Scholar 

  • Maddhinni VL, Vurimindi HB, Yerramilli A (2006) Degradation of azo dye with horse radish peroxidase (HRP). J Indian Inst Sci 86:507–514

    CAS  Google Scholar 

  • Mahalakshmi S, Lakshmi D, Menaga U (2015) Biodegradation of different concentration of dye (Congo red dye) by using Green and Blue Green Algae. Int J Environ Res 9(2):735–744

    CAS  Google Scholar 

  • Mahmood S, Khalid A, Mahmood T, Arshad M, Ahmad R (2013) Potential of newly isolated bacterial strains for simultaneous removal of hexavalent chromium and reactive black-5 azo dye from tannery effluent. J Chem Technol Biotechnol 88:1506–1513

    Article  CAS  Google Scholar 

  • Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE (2015) Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2015.1004518

    Article  Google Scholar 

  • Maiti A, Mishra S, Chaudhary M (2019) Nanoscale materials for arsenic removal from water. Nanoscale Mater Water Purif. https://doi.org/10.1016/B978-0-12-813926-4.00032-X

    Article  Google Scholar 

  • Malani RS, Khanna S, Moholkar VS (2013) Sonoenzymatic decolourization of an azo dye employing immobilized horse radish peroxidase (HRP): a mechanistic study. J Hazard Mater 256–257:90–97

    Article  CAS  Google Scholar 

  • Martinez MJ, Duenas FJR, Cuillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  Google Scholar 

  • Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pig 77:295–302

    Article  CAS  Google Scholar 

  • Min K, Gong G, Woo HM, Kim Y, Um Y (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and b-ether lignin dimer. Sci Rep 5:8245. https://doi.org/10.1038/srep08245

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2018a) Process optimization for effective bio-discolouration of methyl orange by Pseudomonas aeruginosa 23N1 using chemometric methodology. Can J Chem Eng 10:15. https://doi.org/10.1002/cjce.23410

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2018b) The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res 25:8286–8314

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2018c) Optimization of process parameters to enhance the bio-decolourization of Reactive Red 21 by Pseudomonas aeruginosa 23N1. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2023-1

    Article  Google Scholar 

  • Mishra S, Maiti A (2018d) Process optimization for effective bio-discolouration of Reactive Orange 16 using Chemometric methods. Int J Environ Sci Health Part A. https://doi.org/10.1080/10934529.2018.1541383

    Article  Google Scholar 

  • Misra N, Kumar V, Goel NK, Varshney L (2014) Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye. Polymer 55:6017–6024

    Article  CAS  Google Scholar 

  • Mohammad S (2005) HPLC determination of four textile dyes and studying their degradation using spectrophotometric technique. Master of Science thesis. An-Najah National University, Palestine

  • Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58:1097–1105

    Article  CAS  Google Scholar 

  • Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2(1):31–40

    Google Scholar 

  • Murugesan K, Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidumin solid state culture. Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  • Muthukumarasamy NP, Murugan S (2014) Production, purification and application of bacterial laccase: a review. Biotechnology 13(5):196–205

    Article  CAS  Google Scholar 

  • Narayanan MP, Murugan S, Eva AS, Devina SU, Kalidass S (2015) Application of immobilized laccase from Bacillus subtilis MTCC 2414 on decolourization of synthetic dyes. Res J Microbiol 10:421–432

    Article  CAS  Google Scholar 

  • Neifar M, Chouchane H, Mahjoubi M, Jaouani A, Cherif A (2016) Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech 6:107. https://doi.org/10.1007/s13205-016-0425-7

    Article  Google Scholar 

  • Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, Noor ZZ (2015) Biodecolorization of recalcitrant dye as the sole source of nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environ Sci Pollut Res 22:11669–11678

    Article  CAS  Google Scholar 

  • Nguyen TA, Fu CC, Juang RS (2016) Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chem Eng J 304:313–324

    Article  CAS  Google Scholar 

  • Niladevi KN, Sukumaran RK, Prema P (2007) Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol 34:665–674

    Article  CAS  Google Scholar 

  • Ogola HJO, Ashida H, Ishikawa T, Sawa Y (2015) Explorations and applications of enzyme-linked bioremediation of synthetic dyes. Adv Bioremediation Wastewater Pollut Soil. https://doi.org/10.5772/60753

    Article  Google Scholar 

  • Olukanni OD, Osuntoki AA, Kalyani DC, Gbenle GO, Govindwar SP (2010) Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J Hazard Mater 184(1–3):290–298

    Article  CAS  Google Scholar 

  • Olukanni OD, Adenopo A, Awotula AO, Osuntoki AA (2013) Biodegradation of malachite green by extracellular laccase producing Bacillus thuringiensis RUN1. J Basic Appl Sci 9:543–549

    Google Scholar 

  • Omar HH (2008) Algal decolourization and degradation of monoazo and diazo dyes. Pak J Biosci 1(10):1310–1316

    Google Scholar 

  • Otto B, Schlosser D (2014) First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta 240:1225–1236

    Article  CAS  Google Scholar 

  • Oturkar CC, Nemade HN, Mulik PM, Patole MS, Hawaldar RR, Gawai KR (2011) Mechanistic investigation of decolourization and degradation of Reactive Red 120 by Bacillus lentus BI377. Bioresour Technol 102:758–764

    Article  CAS  Google Scholar 

  • Pandi A, Kuppuswami GM, Ramudu KN, Palanivel S (2019) A sustainable approach for degradation of leather dyes by a new fungal laccase. J Clean Prod 211:590–597

    Article  CAS  Google Scholar 

  • Patel DK, Tipre DR, Dave SR (2017) Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. J Taiwan Inst Chem Eng 77:1–9

    Article  CAS  Google Scholar 

  • Patidar R, Khanna S, Moholkar VS (2012) Physical features of ultrasound assisted enzymatic degradation of recalcitrant organic pollutants. Ultrason Sonochem 19:104–118

    Article  CAS  Google Scholar 

  • Patil SR (2014) Production and purification of lignin peroxidase from Bacillus megaterium and its application in bioremidation. CIBTech J Microbiol 3:22–28

    CAS  Google Scholar 

  • Patil PS, Phugare SS, Jadhav SB, Jadhav JP (2010) Communal action of microbial cultures for Red HE3B degradation. J Hazard Mater 181(1–3):263–270

    Article  CAS  Google Scholar 

  • Paz A, Carballo J, Perez MJ, Domínguez JM (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere 181:168–177

    Article  CAS  Google Scholar 

  • Pereira L, Coelho AV, Viegas CA, Santosc MMC, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77

    Article  CAS  Google Scholar 

  • Pereira AR, da Costa RS, Yokoyama L, Alhadeff EM, Teixeira LAC (2014) Evaluation of textile dye degradation due to the combined action of enzyme horseradish peroxidase and hydrogen peroxide. Appl Biochem Biotechnol 174:2741–2747

    Article  CAS  Google Scholar 

  • Qi J, Anke MK, Szymanska K, Tischler D (2017a) Immobilization of Rhodococcus opacus 1CP azoreductase to obtain azo dye degrading biocatalysts operative at acidic pH. Int Biodeterior Biodegrad 118:89–94

    Article  CAS  Google Scholar 

  • Qi J, Paul CE, Hollmann F, Tischler D (2017b) Changing the electron donor improves azoreductase dye degradingactivity at neutral pH. Enzyme Microb Technol 100:17–19

    Article  CAS  Google Scholar 

  • Rao PR, Kavya P (2014) Production, isolation and purification of peroxidase using Bacillus subtilis. Int Cong Environ Biotechnol Chem Eng 64:21–27

    CAS  Google Scholar 

  • Rosales E, Pazos M, Sanroman MA (2011) Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination 278:312–317

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Govindwar SP, Kim DS (2015) Exploiting the efficacy of Lysinibacillus sp. RGS for decolourization and detoxification of industrial dyes, textile effluent and bioreactor studies. J Environ Sci Health Part A 50(2):176–192

    Article  CAS  Google Scholar 

  • Satar R, Husain Q (2011) Catalyzed degradation of disperse dyes by calcium alginate-pectin entrapped bitter gourd (Momordica charantia) peroxidase. J Environ Sci 23(7):1135–1142

    Article  CAS  Google Scholar 

  • Sekuljica NC, Prlainovic NC, Stefanovic AB, Zuza MG, Cickaric DZ, Mijin DC, Jugovic ZDK (2015) Decolourization of anthraquinonic dyes from textile effluent using horseradish peroxidase: optimization and kinetic study. Sci World J. https://doi.org/10.1155/2015/371625

    Article  Google Scholar 

  • Shaffiqu TS, Roy JJ, Nair RA, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102–103:326–375

    Google Scholar 

  • Shah PD, Dave SR, Rao MS (2012) Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int Biodeterior Biodegrad 69:41–50

    Article  CAS  Google Scholar 

  • Silva MC, Corrêa AD, Amorim MTSP, Parpot P, Torres JA, Chagas PMB (2012) Decolourization of the phthalocyanine dye reactive blue 21 by turnip peroxidase and assessment of its oxidation products. J Mol Catal B Enzym 77:9–14

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolourization and degradation of azo dyes—a review. Int Biodeterior Biodegrad 104:21–31

    Article  CAS  Google Scholar 

  • Soares GMB, Amorim MTP, Hrdina R, Ferreira MC (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587

    Article  CAS  Google Scholar 

  • Spadiut O, Herwig C (2013) Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm Bioprocess 1(3):283–295

    Article  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol Appl Sci 3(2):670–690

    CAS  Google Scholar 

  • Sun H, Yang H, Huang W, Zhang S (2015) Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. J Colloid Interface Sci 450:353–360

    Article  CAS  Google Scholar 

  • Telke AA, Kadam AA, Govindwar SP (2015) Bacterial Enzymes and their role in decolorization of azo dyes. Environ Sci Eng. https://doi.org/10.1007/978-3-319-10942-8_7

    Article  Google Scholar 

  • Torres E, Jaimes IB, Borgne SL (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46:1–15

    Article  CAS  Google Scholar 

  • Uday USP, Bandyopadhyay TK, Bhunia B (2016) Bioremediation and detoxification technology for treatment of dye(s) from textile effluent. In: Akcakoca Kumbasar E (ed) Textile wastewater treatment. InTech. https://doi.org/10.5772/62309

  • Vikranta K, Giria BS, Razab N, Roya K, Kimd KH, Raia BN, Singh RS (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367

    Article  CAS  Google Scholar 

  • Vujcic Z, Janovic B, Loncar N, Margetic A, Bozic N, Dojnov B, Vujci M (2015) Exploitation of neglected horseradish peroxidase izoenzymes for dye decolourization. Int Biodeterior Biodegrad 97:124–127

    Article  CAS  Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye reactive red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63(4):395–399

    Article  CAS  Google Scholar 

  • Wang N, Chu Y, Wu F, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244

    Article  CAS  Google Scholar 

  • Watharkar AD, Jadhav JP (2014) Detoxification and decolourization of a simulated textile dye mixture by phytoremediation using Petunia grandiflora and Gailardia grandiflora: a plant–plant consortial strategy. Ecotoxicol Environ Saf 103:1–8

    Article  CAS  Google Scholar 

  • Watharkara AD, Kadama SK, Khandare RV, Kolekar PD, Jeond BH, Jadhav JP, Govindwar SP (2018) Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: a lab to land approach for in situ soil remediation. Ecotoxicol Environ Saf 161:70–77

    Article  CAS  Google Scholar 

  • Won SW, Yun YS (2008) Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pig 76(2):502–507. https://doi.org/10.1016/j.dyepig.2006.10.011

    Article  CAS  Google Scholar 

  • Won SW, Choi SB, Chung BW, Park D, Park JM, Yun YS (2004) Biosorptive decolorization of Reactive Orange 16 using the waste biomass of Corynebacterium glutamicum. Ind Eng Chem Res 43(24):7865–7869

    Article  CAS  Google Scholar 

  • Wong Y, Yu J (1999) Laccase-catalyzed decolourization of synthetic dyes. Water Res 33:3512–3520

    Article  CAS  Google Scholar 

  • Xu H, Guo MY, Gao YH, Bai XH, Zhou XW (2017) Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnol 17:19. https://doi.org/10.1186/s12896-017-0338-5

    Article  CAS  Google Scholar 

  • Yang YY, Du LN, Wang G et al (2011) The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for Methyl orange and Acid yellow 199 under microaerophilic conditions. Water Sci Technol 63:956–963

    Article  CAS  Google Scholar 

  • Yang Y, Wei B, Zhao Y, Wang J (2013) Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal. Bioresour Technol 130:517–521

    Article  CAS  Google Scholar 

  • Yang X, Zheng J, Lu Y, Jia R (2016) Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environ Sci Pollut Res 23:9585–9597

    Article  CAS  Google Scholar 

  • Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem 41:1987–1993

    Article  CAS  Google Scholar 

  • Zamora PP, Pereira CM, Tiburtius ERL, Moraes SG, Rosa MA, Minussi RC, Durán N (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B Environ 42:131–144

    Article  CAS  Google Scholar 

  • Zeng X, Cai Y, Liao X, Zeng X, Li W, Zhang D (2011) Decolourization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J Hazard Mater 187:517–525

    Article  CAS  Google Scholar 

  • Zhao L, Zhou J, Jia Y, Chen J (2010) Biodecolorization of Acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology. J Hazard Mater 181(1–3):602–608

    Article  CAS  Google Scholar 

  • Zille A, Tzanov T, Gübitz GM, Paulo AC (2003) Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. Biotechnol Lett 25:1473–1477

    Article  CAS  Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified Orange I1 azoreductase, the enzyme initiating azo dye degradation by Pseudumunas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Maiti, A. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Techn Environ Policy 21, 763–781 (2019). https://doi.org/10.1007/s10098-019-01681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-019-01681-5

Keywords

Navigation