Skip to main content

Advertisement

Log in

Impact of policy incentives on electric vehicles development: a system dynamics-based evolutionary game theoretical analysis

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A system dynamics-based evolutionary game theoretical analysis is proposed to examine the impact of policy incentives, i.e., price subsidy and taxation preference on electric vehicles (EVs) industry development. Two case scenarios were used to distinguish policy performance by dividing it into a static and dynamic incentive. The result reflected that the game in implementation of the static incentive policy did not achieve stable equilibrium, indicating that such a policy is not effective for driving the development of the EVs industry. However, the game had stable equilibrium when dynamic incentive policy was implemented. The taxation preference had better performance in incentivizing EVs production than the direct subsidy. The study is expected to provide insight into policy making in the industrial transition toward low-carbon consumption. Limitations are given to indicate opportunities for further research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(P_{g}\) :

The price of an electric vehicle

\(P_{n}\) :

The price of a fossil fuel-based vehicle

\(C_{g}\) :

The unit cost of an electric vehicle

\(C_{n}\) :

The unit cost of a fossil fuel-based vehicle

\(G_{g}\) :

Consumer’s attitude toward purchasing an electric vehicle

\(G_{n}\) :

Consumer’s attitude toward purchasing a fossil fuel-based vehicle

\(\lambda_{g}\) :

The environmental performance of an electric vehicle

\(\lambda_{n}\) :

The environmental performance of a fossil fuel-based vehicle

\(U_{\text{c}}^{g}\) :

The consumer’s payoffs from purchasing an electric vehicle

\(U_{\text{c}}^{n}\) :

The consumer’s payoffs from purchasing a fossil fuel-based vehicle

\(W_{\text{e}}\) :

The subsidy to enterprise that produces an electric vehicle

\(W_{\text{c}}\) :

The subsidy to consumer who purchases an electric vehicle

\(T_{\text{e}}\) :

The tax preference on the electric vehicle enterprise

\(\gamma\) :

The preferential tax rate

\(\varPi_{\text{e}}^{g}\) :

The enterprise’s payoffs from producing an electric vehicle

\(\varPi_{\text{e}}^{c}\) :

The enterprise’s payoffs from producing a fossil fuel-based vehicle

\(Q_{g}\) :

The market demand for electric vehicles

\(Q_{n}\) :

The market demand for fossil fuel-based vehicles

\(R_{g}\) :

The consumer’s perceived benefits from purchasing an electric vehicle

\(R_{n}\) :

The consumer’s perceived benefits from purchasing a fossil fuel-based vehicle

References

  • Aslani A, Helo P, Naaranoja M (2014) Role of renewable energy policies in energy dependency in Finland: system dynamics approach. Appl Energy 113:758–765

    Article  Google Scholar 

  • Barari S, Agarwal G, ZhangWJ Mahanty B, Tiwari MK (2012) A decision framework for the analysis of green supply chain contracts: an evolutionary game approach. Expert Syst Appl 39(3):2965–2976

    Article  Google Scholar 

  • Bjerkan KY, Norbech TE, Nordtomme ME (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway. Transp Res D Transp Environ 43:169–180

    Article  Google Scholar 

  • CAAM (China Association of Automobile Manufactures) (2018) The data of Chinese car sales in 2017. http://news.bitauto.com/hao/wenzhang/548812. Accessed 19 Sept 2018

  • Chen K, Xiao T (2015) Outsourcing strategy and production disruption of supply chain with demand and capacity allocation uncertainties. Int J Prod Econ 170:243–257

    Article  Google Scholar 

  • Dinner IM, Van Heerde HJ, Neslin SA (2014) Driving online and offline sales: the cross-channel effects of traditional, online display, and paid search advertising. J Mark Res 51(5):527–545

    Article  Google Scholar 

  • Du JY, Ouyang DH (2017) Progress of Chinese electric vehicles industrialization in 2015: a review. Appl Energy 188:529–546

    Article  Google Scholar 

  • Du Z, Lin B, Guan C (2019) Development path of electric vehicles in China under environmental and energy security constraints. Resour Conserv Recy 143:17–26

    Article  Google Scholar 

  • Egbue O, Long S, Samaranayake VA (2017) Mass deployment of sustainable transportation: evaluation of factors that influence electric vehicle adoption. Clean Technol Environ Policy 19(7):1927–1939

    Article  Google Scholar 

  • Friedman D (1991) Evolutionary games in economics. Econometrica 59(3):637–666

    Article  Google Scholar 

  • Gallagher KS, Muehlegger E (2011) Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. J Environ Econ Manag 61(1):1–15

    Article  Google Scholar 

  • Gao Y, Li Z, Wang F, Wang F, Tan RR, Bi J, Jia X (2018) A game theory approach for corporate environmental risk mitigation. Resour Conserv Recycl 130:240–247

    Article  Google Scholar 

  • Girardi P, Gargiulo A, Brambilla PC (2015) A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. Int J Life Cycle Assess 20(8):1127–1142

    Article  CAS  Google Scholar 

  • Guo D, He Y, Wu Y, Xu Q (2016) Analysis of supply chain under different subsidy policies of the government. Sustainability 8(12):1290

    Article  Google Scholar 

  • Hafezalkotob A, Alavi A, Makui A (2016) Government financial intervention in green and regular supply chains: multi-level game theory approach. Int J Manag Sci Eng 11(3):167–177

    Google Scholar 

  • Hao H, Wang M, Zhou Y, Wang HW, Ouyang MG (2015) Levelized costs of conventional and battery electric vehicles in china: Beijing experiences. Mitig Adapt Strateg Glob 20(7):1229–1246

    Article  Google Scholar 

  • Hao H, Cheng X, Liu Z, Zhao F (2017) Electric vehicles for greenhouse gas reduction in China: a cost-effectiveness analysis. Transp Res D Transp Environ 56:68–84

    Article  Google Scholar 

  • Hirte G, Tscharaktschiew S (2013) The optimal subsidy on electric vehicles in German metropolitan areas: a spatial general equilibrium analysis. Energy Econ 40:515–528

    Article  Google Scholar 

  • Hu GP, Wang LZ, Chen YH, Bidanda B (2014) An oligopoly model to analyze the market and social welfare for green manufacturing industry. J Clean Prod 85:94–103

    Article  Google Scholar 

  • Ji P, Ma X, Li G (2015) Developing green purchasing relationships for the manufacturing industry: an evolutionary game theory perspective. Int J Prod Econ 166:155–162

    Article  Google Scholar 

  • Jiang ZZ, He N, Qin X, Ip WH, Wu CH, Yung KL (2018a) Evolutionary game analysis and regulatory strategies for online group-buying based on system dynamics. Enterp Inf Syst 12(6):695–713

    Article  Google Scholar 

  • Jiang H, Zhao S, Yuan Y, Zhang L, Duan L, Zhang W (2018b) The coupling relationship between standard development and technology advancement: a game theoretical perspective. Technol Forecast Soc 135:169–177

    Article  Google Scholar 

  • Junquera B, Moreno B, Alvarez R (2016) Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: technological limitations and vehicle confidence. Technol Forecast Soc 109:6–14

    Article  Google Scholar 

  • Kim MK, Oh J, Park JH, Joo C (2018) Perceived value and adoption intention for electric vehicles in Korea: moderating effects of environmental traits and government supports. Energy 159:799–809

    Article  Google Scholar 

  • Lieven T (2015) Policy measures to promote electric mobility—a global perspective. Transp Res A Policy 82:78–93

    Article  Google Scholar 

  • Liu QL, Li XC, Hassall M (2015) Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics. Saf Sci 80:13–22

    Article  CAS  Google Scholar 

  • Liu C, Huang W, Yang C (2017) The evolutionary dynamics of China’s electric vehicle industry—taxes vs subsidies. Comput Ind Eng 113:103–122

    Article  Google Scholar 

  • Mahmoudi R, Rasti-Barzoki M (2018) Sustainable supply chains under government intervention with a real-world case study: an evolutionary game theoretic approach. Comput Ind Eng 116:130–143

    Article  Google Scholar 

  • Ministry of Finance of the People’s Republic of China (2018) Notice on the adjustment and improvement of the subsidy policy for the promotion of new energy vehicles. http://jjs.mof.gov.cn/zhengwuxinxi/zhengcefagui/201802/t20180213_2815574.html. Accessed 10 May 2018

  • MOST (Ministry of Science and Technology of the People’s Republic of China) (2016) Notice on revising and publishing the measures for the identification of high-tech enterprises. http://most.gov.cn/tztg/201602/t20160204_123994.html. Accessed 15 Jan 2019

  • Noori M, Tatari O (2016) Development of an agent-based model for regional market penetration projections of electric vehicles in the United States. Energy 96:215–230

    Article  Google Scholar 

  • Oltra V, Jean MS (2009) Sectoral systems of environmental innovation: an application to the French automotive industry. Technol Forecast Soc 76(4):567–583

    Article  Google Scholar 

  • Plötz P, Schneider U, Globisch J, Dütschke E (2014) Who will buy electric vehicles? Identifying early adopters in Germany. Transp Res A Policy 67:96–109

    Article  Google Scholar 

  • Rezvani Z, Jansson J, Bodin J (2015) Advances in consumer electric vehicle adoption research: a review and research agenda. Transp Res D Transp Environ 34:122–136

    Article  Google Scholar 

  • Safarzyńska K, van den Bergh JC (2018) A higher rebound effect under bounded rationality: interactions between car mobility and electricity generation. Energy Econ 74:179–196

    Article  Google Scholar 

  • Sheu JB, Chen YMJ (2012) Impact of government financial intervention on competition among green supply chains. Int J Prod Econ 138(1):201–213

    Article  Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(11):5

    Google Scholar 

  • Tan QL, Wang MN, Deng YM, Yang HP, Rao R, Zhang XP (2014) The cultivation of electric vehicles market in China: dilemma and solution. Sustainability 6(8):5493–5511

    Article  Google Scholar 

  • Teixeira ACR, da Silva DL, Neto LDVBM, Diniz ASAC, Sodré JR (2015) A review on electric vehicles and their interaction with smart grids: the case of Brazil. Clean Technol Environ Policy 17(4):841–857

    Article  Google Scholar 

  • Teng J, Xu C, Wang W, Wu X (2018) A system dynamics-based decision-making tool and strategy optimization simulation of green building development in China. Clean Technol Environ Policy 20(6):1259–1270

    Article  Google Scholar 

  • Tian YH, Govindan K, Zhu QH (2014) A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers. J Clean Prod 80:96–105

    Article  Google Scholar 

  • Wang N, Pan H, Zheng W (2017) Assessment of the incentives on electric vehicle promotion in China. Transp Res A Policy 101:177–189

    Article  Google Scholar 

  • Wang Y, Huscroft JR, Hazen BT, Zhang M (2018) Green information, green certification and consumer perceptions of remanufactured automobile parts. Resour Conserv Recycl 128:187–196

    Article  Google Scholar 

  • Weinstein MI (1986) Lyapunov stability of ground-states of nonlinear dispersive evolution-equations. Commun Pur Appl Math 39(1):51–67

    Article  Google Scholar 

  • Xu L, Su J (2016) From government to market and from producer to consumer: transition of policy mix towards clean mobility in China. Energy Policy 96:328–340

    Article  Google Scholar 

  • Yang DY, Xiao TJ (2017) Pricing and green level decisions of a green supply chain with governmental interventions under fuzzy uncertainties. J Clean Prod 149:1174–1187

    Article  Google Scholar 

  • Yang J, Dong J, Hu L (2018) Design government incentive schemes for promoting electric taxis in China. Energy Policy 115:1–11

    Article  Google Scholar 

  • Zhang X (2014) Reference-dependent electric vehicle production strategy considering subsidies and consumer trade-offs. Energy Policy 67:422–430

    Article  Google Scholar 

  • Zhang X, Bai X (2017) Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China. Renew Sustain Energy Rev 70:24–43

    Article  Google Scholar 

  • Zhang Y, Han Q (2017) Development of electric vehicles for China’s power generation portfolio: a regional economic and environmental analysis. J Clean Prod 162:71–85

    Article  Google Scholar 

  • Zhao R, Neighbour G, Han J, McGuire M, Deutz P (2012) Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain. J Loss Prev Process 25(6):927–936

    Article  CAS  Google Scholar 

  • Zhao R, Neighbour G, McGuire M, Deutz P (2013) A software based simulation for cleaner production: a game between manufacturers and government. J Loss Prev Process 26(1):59–67

    Article  Google Scholar 

  • Zhao R, Peng DP, Li Y (2015) An interaction between government and manufacturer in implementation of cleaner production: a multi-stage game theoretical analysis. Int J Environ Res 9(3):1069–1078

    Google Scholar 

  • Zhao R, Zhou X, Han JJ, Liu CL (2016) For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation. Technol Forecast Soc 112:262–274

    Article  Google Scholar 

  • Zhao R, Han JJ, Zhong SZ, Huang Y (2018) Interaction between enterprises and consumers in a market of carbon-labeled products: a game theoretical analysis. Environ Sci Pollut Res 25:1394–1404

    Article  CAS  Google Scholar 

  • Zheng X, Lin H, Liu Z, Li D, Llopis-Albert C, Zeng S (2018) Manufacturing decisions and government subsidies for electric vehicles in China: a maximal social welfare perspective. Sustainability 10(3):672

    Article  Google Scholar 

  • Zhou KZ, Brown JR, Dev CS (2009) Market orientation, competitive advantage, and performance: a demand-based perspective. J Bus Res 62(11):1063–1070

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by National Natural Science Foundation of China (No. 41571520), Sichuan Provincial Key Technology Support (No. 2019JDJQ0020), Sichuan Province Circular Economy Research Center Fund (No. XHJJ-1802), the Fundamental Research Funds for the Central Universities (No. 2682014RC04), Guangxi Key Laboratory of Spatial Information and Geomatics (No. 17-259-16-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Evolutionary equilibrium stability analysis

  1. (1)

    Scenario 1

The stability analysis is to verify the SD simulation. By substituting the original values (Table 3) in Eq. (13), the replicated dynamic equations under the static policies are obtained as follows:

$$\left\{ {\begin{array}{*{20}l} {F\left( x \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}} = x\left( {1 - x} \right)\left( {0.47y - 0.21} \right)} \hfill \\ {F\left( y \right) = \frac{{{\text{d}}y}}{{{\text{d}}t}} = y\left( {1 - y} \right)\left( {0.2 - 0.42x} \right)} \hfill \\ \end{array} } \right.$$
(15)

Let X = [F(x) F(y)] = 0; the equilibrium points of the game are:

$$X_{1} = \, \left( {0, \, 0} \right), \, X_{2} = \, \left( {0, \, 1} \right), \, X_{3} = \, \left( {1, \, 0} \right), \, X_{4} = \, \left( {1, \, 1} \right), \, X_{5} = \left( {\frac{10}{21},\;\frac{21}{47}} \right)$$

The stability of equilibrium strategy is derived from the Jacobian matrix. Any equilibrium point that satisfies detJ > 0 and trJ < 0 is considered as asymptotically stable, which is deemed as an evolutionary stable strategy (Weinstein 1986). The Jacobian matrix J is given as follows:

$$J = \left[ {\begin{array}{*{20}c} {\frac{\partial F\left( x \right)}{\partial x}} & {\frac{\partial F\left( x \right)}{\partial y}} \\ {\frac{\partial F\left( y \right)}{\partial x}} & {\frac{\partial F\left( y \right)}{\partial y}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {1 - 2x} \right)\left( {0.47y - 0.21} \right)} & {0.47x\left( {1 - x} \right)} \\ { - \,0.42y\left( {1 - y} \right)} & {\left( {1 - 2y} \right)\left( {0.2 - 0.42x} \right)} \\ \end{array} } \right]$$
(16)

The stability of the five strategic pairs derived from the Scenario 1 is given in Table 4. There are four unstable equilibrium points and one center point, indicating that no evolutionary stable strategy(ESS) exists.

Table 4 Stability analysis for the equilibrium points under the situation of static policies

Figure 8 shows the evolutionary game process under the implementation of the static policy incentives. Such process shows a periodic circle, indicating that enterprises and consumers may be easily impacted by the policies to adjust their strategies. This phenomenon has verified the SD simulation results of the Scenario 1.

Fig. 8
figure 8

Evolutionary game process under the static policy incentives

  1. (2)

    Scenario 2

The simulation results of the Scenario 2 indicate that the dynamic incentive policies have better performance than that of the static ones. The replicated dynamic equations and the corresponding Jacobian matrix under the dynamic incentive policies are obtained as follows:

  1. i.

    The dynamic subsidy to enterprises

The replicated dynamic equation set is obtained by substituting \(W_{\text{e}}^{\prime }\) for \(W_{\text{e}}\) in Eq. (13).

$$\left\{ {\begin{array}{*{20}l} {F\left( x \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}} = x\left( {1 - x} \right)\left[ {y\left( {C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}} } \right) - \left( {\varPi_{\text{e}}^{c} + C_{g} } \right)} \right]} \hfill \\ {F\left( { y} \right) = \frac{{{\text{d}}y}}{{{\text{d}}t}} = y\left( {1 - y} \right)\left[ {x\left( {U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g} } \right) + \left( {R_{n} - U_{\text{c}}^{n} } \right)} \right] } \hfill \\ \end{array} } \right.$$
(17)

Consequently, the equilibrium are obtained as follows:

$$X_{1}^{\prime } = \left( {\begin{array}{*{20}c} { 0 } \\ 0 \\ \end{array} } \right),\;X_{2}^{\prime } = \left( {\begin{array}{*{20}c} { 0 } \\ 1 \\ \end{array} } \right),\;X_{3}^{\prime } = \left( {\begin{array}{*{20}c} { 1 } \\ 0 \\ \end{array} } \right),\;X_{4}^{\prime } = \left( {\begin{array}{*{20}c} { 1 } \\ 1 \\ \end{array} } \right),\;X_{5}^{\prime } = \left( {\begin{array}{*{20}c} { x } \\ y \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { \frac{{U_{\text{c}}^{n} - R_{n} }}{{U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g} }} } \\ {\frac{{\varPi_{\text{e}}^{c} + C_{g} }}{{C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}} }}} \\ \end{array} } \right)$$

Similarly, the corresponding Jacobian matrix J is:

$$J_{1}^{\prime } = \left[ {\begin{array}{*{20}c} {\frac{\partial F\left( x \right)}{\partial x}} & {\frac{\partial F\left( x \right)}{\partial y}} \\ {\frac{\partial F\left( y \right)}{\partial x}} & {\frac{\partial F\left( y \right)}{\partial y}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {1 - 2x} \right)\left( {yA - B} \right) - xy\left( {1 - x} \right)C} & {x\left( {1 - x} \right)A} \\ {y\left( {1 - y} \right)D} & {\left( {1 - 2y} \right)\left( {xD + E} \right)} \\ \end{array} } \right]$$
(18)

where \(A = C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}}\); B = \(\varPi_{\text{e}}^{c} + C_{g}\); C = \(W_{\text{e}}\); \(D = U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g}\); E = \(R_{n} - U_{\text{c}}^{n}\).

  1. ii.

    The dynamic subsidy to consumers

The replicated dynamic equation set is obtained by substituting \(W_{\text{c}}^{\prime }\) for \(W_{\text{c}}\) in Eq. (13).

$$\left\{ {\begin{array}{*{20}l} {F\left( x \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}} = x\left( {1 - x} \right)\left[ {y\left( {C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}} } \right) - \left( {\varPi_{\text{e}}^{c} + C_{g} } \right)} \right] } \hfill \\ {F\left( { y} \right) = \frac{{{\text{d}}y}}{{{\text{d}}t}} = y\left( {1 - y} \right)\left[ {x\left( {U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g} } \right) + \left( {R_{n} - U_{\text{c}}^{n} } \right)} \right] } \hfill \\ \end{array} } \right.$$
(19)

Consequently, the equilibrium are obtained as follows:

$$X_{1}^{c} = \left( {\begin{array}{*{20}c} { 0 } \\ 0 \\ \end{array} } \right),\;X_{2}^{c} = \left( {\begin{array}{*{20}c} { 0 } \\ 1 \\ \end{array} } \right),\;X_{3}^{c} = \left( {\begin{array}{*{20}c} { 1 } \\ 0 \\ \end{array} } \right),\;X_{4}^{c} = \left( {\begin{array}{*{20}c} { 1 } \\ 1 \\ \end{array} } \right),\;X_{5}^{c} = \left( {\begin{array}{*{20}c} { x } \\ y \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { \frac{{U_{\text{c}}^{n} - R_{n} }}{{U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g} }} } \\ {\frac{{\varPi_{\text{e}}^{c} + C_{g} }}{{C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}} }}} \\ \end{array} } \right)$$

Similarly, the corresponding Jacobian matrix J is:

$$J_{2}^{\prime } = \left[ {\begin{array}{*{20}c} {\frac{\partial F\left( x \right)}{\partial x}} & {\frac{\partial F\left( x \right)}{\partial y}} \\ {\frac{\partial F\left( y \right)}{\partial x}} & {\frac{\partial F\left( y \right)}{\partial y}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {1 - 2x} \right)\left( {yA^{c} - B^{c} } \right)} & {x\left( {1 - x} \right)A^{c} } \\ {y\left( {1 - y} \right)D^{c} } & {\left( {1 - 2y} \right)\left( {xD^{c} + E^{c} } \right) - xy\left( {1 - y} \right)C^{c} } \\ \end{array} } \right]$$
(20)

where \(A^{c} = C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}}\); \(B^{c} = \varPi_{\text{e}}^{c} + C_{g}\); \(C^{c} = W_{\text{c}}\); \(D^{c} = U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g}\); \(E^{c} = R_{n} - U_{\text{c}}^{n}\).

  1. iii.

    The dynamic preferential tax on enterprises

The replicated dynamic equation set is obtained by substituting \(T_{\text{e}}^{\prime }\) for \(T_{\text{e}}\) in Eq. (13).

$$\left\{ {\begin{array}{*{20}l} {F\left( x \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}} = x\left( {1 - x} \right)\left[ {y\left( {C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}}^{\prime } } \right) - \left( {\varPi_{\text{e}}^{c} + C_{g} } \right)} \right] } \hfill \\ {F\left( { y} \right) = \frac{{{\text{d}}y}}{{{\text{d}}t}} = y\left( {1 - y} \right)\left[ {x\left( {U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g} } \right) + \left( {R_{n} - U_{\text{c}}^{n} } \right)} \right] } \hfill \\ \end{array} } \right.$$
(21)

Consequently, the equilibrium are obtained as follows:

$$X_{1}^{\text{T}} = \left( {\begin{array}{*{20}c} { 0 } \\ 0 \\ \end{array} } \right),\;X_{2}^{\text{T}} = \left( {\begin{array}{*{20}c} { 0 } \\ 1 \\ \end{array} } \right),\;X_{3}^{\text{T}} = \left( {\begin{array}{*{20}c} { 1 } \\ 0 \\ \end{array} } \right),\;X_{4}^{\text{T}} = \left( {\begin{array}{*{20}c} { 1 } \\ 1 \\ \end{array} } \right),\;X_{5}^{\text{T}} = \left( {\begin{array}{*{20}c} { x } \\ y \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { \frac{{U_{\text{c}}^{n} - R_{n} }}{{U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g} }} } \\ {\frac{{\varPi_{\text{e}}^{c} + C_{g} }}{{C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}}^{\prime } }}} \\ \end{array} } \right)$$

Similarly, the corresponding Jacobian matrix J is:

$$J_{3}^{\prime } = \left[ {\begin{array}{*{20}c} {\frac{\partial F\left( x \right)}{\partial x}} & {\frac{\partial F\left( x \right)}{\partial y}} \\ {\frac{\partial F\left( y \right)}{\partial x}} & {\frac{\partial F\left( y \right)}{\partial y}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {1 - 2x} \right)\left( {yA^{T} - B^{T} } \right) - xy\left( {1 - x} \right)C^{T} } & {x\left( {1 - x} \right)A^{T} } \\ {y\left( {1 - y} \right)D^{T} } & {\left( {1 - 2y} \right)\left( {xD^{T} + E^{T} } \right)} \\ \end{array} } \right]$$
(22)

where \(A^{\text{T}} = C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}} + T_{\text{e}}^{\prime }\); \(B^{\text{T}} = \varPi_{\text{e}}^{c} + C_{g}\); \(C^{\text{T}} = T_{\text{e}}\); \(D^{\text{T}} = U_{\text{c}}^{g} + W_{\text{c}} + U_{\text{c}}^{n} - R_{n} - R_{g}\); \(E^{\text{T}} = R_{n} - U_{\text{c}}^{n}\).

  1. iv.

    The combination of dynamic policy incentives

The replicated dynamic equation set is obtained by substituting \(W_{\text{e}}^{\prime }\), \(W_{\text{c}}^{\prime }\) and \(T_{\text{e}}^{\prime }\) for \(W_{\text{e}}\), \(W_{\text{c}}\) and \(T_{\text{e}}\) in Eq. (13), respectively.

$$\left\{ {\begin{array}{*{20}l} {F\left( x \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}} = x\left( {1 - x} \right)\left[ {y\left( {C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}}^{\prime } } \right) - \left( {\varPi_{\text{e}}^{c} + C_{g} } \right)} \right] } \hfill \\ {F\left( { y} \right) = \frac{{{\text{d}}y}}{{{\text{d}}t}} = y\left( {1 - y} \right)\left[ {x\left( {U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g} } \right) + \left( {R_{n} - U_{\text{c}}^{n} } \right)} \right] } \hfill \\ \end{array} } \right.$$
(23)

Consequently, the equilibrium are obtained as follows:

$$X_{1}^{\theta } = \left( {\begin{array}{*{20}c} { 0 } \\ 0 \\ \end{array} } \right),\;X_{2}^{\theta } = \left( {\begin{array}{*{20}c} { 0 } \\ 1 \\ \end{array} } \right),\;X_{3}^{\theta } = \left( {\begin{array}{*{20}c} { 1 } \\ 0 \\ \end{array} } \right),\;X_{4}^{\theta } = \left( {\begin{array}{*{20}c} { 1 } \\ 1 \\ \end{array} } \right),\;X_{5}^{\theta } = \left( {\begin{array}{*{20}c} { x } \\ y \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { \frac{{U_{\text{c}}^{n} - R_{n} }}{{U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g} }} } \\ {\frac{{\varPi_{\text{e}}^{c} + C_{g} }}{{C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}}^{\prime } }}} \\ \end{array} } \right)$$

Similarly, the corresponding Jacobian matrix J is:

$$J_{4}^{\prime } = \left[ {\begin{array}{*{20}c} {\frac{\partial F\left( x \right)}{\partial x}} & {\frac{\partial F\left( x \right)}{\partial y}} \\ {\frac{\partial F\left( y \right)}{\partial x}} & {\frac{\partial F\left( y \right)}{\partial y}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {1 - 2x} \right)\left( {yA^{\theta } - B^{\theta } } \right) - xy\left( {1 - x} \right)C^{\theta } } & {x\left( {1 - x} \right)A^{\theta } } \\ {y\left( {1 - y} \right)D^{\theta } } & {\left( {1 - 2y} \right)\left( {xD^{\theta } + E^{\theta } } \right) - xy\left( {1 - y} \right)F^{\theta } } \\ \end{array} } \right]$$
(24)

where \(A^{\theta } = C_{g} + C_{n} + \varPi_{\text{e}}^{g} + \varPi_{\text{e}}^{c} + W_{\text{e}}^{\prime } + T_{\text{e}}^{\prime }\); \(B^{\theta } = \varPi_{\text{e}}^{c} + C_{g}\); \(C^{\theta } = W_{\text{e}} + T_{\text{e}}\); \(D^{\theta } = U_{\text{c}}^{g} + W_{\text{c}}^{\prime } + U_{\text{c}}^{n} - R_{n} - R_{g}\); \(E^{\theta } = R_{n} - U_{\text{c}}^{n}\); \(F^{\theta } = W_{\text{c}}\).

The stability of the five strategic pairs under the different dynamic incentive policies is given in Table 5. There is an ESS existed (x, y), which verifies the simulation results of the Scenario 2. Figure 9 shows evolutionary process of the game under the different dynamic incentive policies. As the rounds of the game increase, the trend of the curves gradually reaches an equilibrium point, which indicates that the game has asymptotic stability under the dynamic incentive policies.

Table 5 Stability analysis for the equilibrium points under the dynamic incentive policies
Fig. 9
figure 9

Players’ behaviors in evolutionary game with the different dynamic incentive policies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhao, R., Cheng, L. et al. Impact of policy incentives on electric vehicles development: a system dynamics-based evolutionary game theoretical analysis. Clean Techn Environ Policy 21, 1039–1053 (2019). https://doi.org/10.1007/s10098-019-01691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-019-01691-3

Keywords

Navigation