Skip to main content

Advertisement

Log in

Thermal selective coatings and its enhancement characteristics for efficient power generation through parabolic trough collector (PTC)

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

World climate is an area of concern due to the use of fossil fuels that have been the most commonly preferred resource of energy since the industrial revolution and urbanization. The target to maintain the lowest level of carbon emissions and greenhouse gases has created an urge to look for renewable energy resources. Among the renewable energy resources available worldwide, solar energy is considered as one of the feasible and mature technologies in view of large-scale commercial deployment. Solar photovoltaic and solar thermal conversion (STC) techniques have been implemented so far and are still advancing towards cost-effective solutions. Parabolic trough collector (PTC) is one such economical and feasible STC technology as far as high-temperature thermal applications are concerned and are being widely used for power generation. This paper is an attempt to present the current scenario of PTC technology along with its various advancements over the years. Further in this paper, selective coatings, coating techniques and heat collection element (HCE) or receiver are discussed in detail with regard to their advancements. The present work also illustrates the progressive trends in PTC technology, particularly with respect to various heat transfer fluids, HCE inserts, selective coatings and other performance factors along with some futuristic aspects with respect to coatings and receiver inserts in view of high thermal performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

CFD:

Computational fluid dynamics

CSP:

Concentrating solar power

CVD:

Chemical vapour deposition

DSC:

Differential scanning calorimetry

DSG:

Direct steam generation

ERD:

Elastic recoil detection

EDAX:

Energy-dispersive X-ray analysis

FTIR:

Fourier transform infrared spectroscopy

FVM:

Finite volume method

GHGs:

Greenhouse gases

HCE:

Heat collection element

HTF:

Heat transfer fluid

ISG:

Indirect steam generation

LCoE:

Levelized cost of energy

MCRT:

Monte Carlo ray trace

MWCNT:

Multi-walled carbon nanotubes

NP:

Nanoparticle

PTC:

Parabolic trough collector

SEM:

Scanning electron microscopy

SPV:

Solar photovoltaic

STC:

Solar thermal conversion

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

UV-Vis:

Ultraviolet visible spectrometry

XRD:

X-ray diffraction

\(\psi_{j}\) :

Optical thickness of layer

ϕ j :

Angle of refraction

\(u_{j}\) :

Effective refractive index

\(\Delta \varepsilon\) :

Influencing factor of core material

f* :

Ratio of inner volume of sphere to whole volume of sphere

n j :

Refractive index

fA and fB :

Value fraction or filling factor

\(\varepsilon_{A}\) and \(\varepsilon_{B}\) :

Dielectric constants

Z1 and Z2 :

No. of configurations

MG:

Maxwell Garnett

PS:

Ping Sheng

Br:

Bruggeman

BH:

Bruggeman–Hanai

References

  • Abutayeh M, Addad Y, Abu-Nada E, Alazzam A (2019) Doping solar field heat transfer fluid with nanoparticles. J Sol Energy Eng 141(1):011013

    Google Scholar 

  • Adachi H, Wasa K (2012) Thin films and nanomaterials, handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS vol 1

  • Alguacil M, Prieto C, Rodriguez A, Lohr J (2014) Direct steam generation in parabolic trough collectors. Energy Procedia 49:21–29

    Google Scholar 

  • Almanza R, Lentz A, Jimenez G (1997) Receiver behavior in direct steam generation with parabolic troughs. Sol Energy 61(4):275–278

    Google Scholar 

  • AL-Rjoub A, Rebouta L, Costa P, Cunha N, Lanceros-Mendez S, Barradas N, Alves E (2019) The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability. Appl Surf Sci 481:1096–1102

    CAS  Google Scholar 

  • Ambrosini A, Lambert TN, Boubault A, Hunt A, Davis DJ, Adams D, Hall AC (2015) Thermal stability of oxide-based solar selective coatings for CSP central receivers. In: ASME 2015 9th international conference on energy sustainability collocated with the ASME 2015 power conference, the ASME 2015 13th international conference on fuel cell science, engineering and technology, and the ASME 2015 nuclear forum, V001T05A022–V001T05A022

  • Atchuta S, Sakthivel S, Barshilia HC (2019) Transition metal based CuxNiyCoz-x-yO4 spinel composite solar selective absorber coatings for concentrated solar thermal applications. Sol Energy Mater Sol Cells 189:226–232

    CAS  Google Scholar 

  • Atkinson C, Sansom CL, Almond HJ, Shaw CP (2015) Coatings for concentrating solar systems-a review. Renew Sustain Energy Rev 45:113–122

    CAS  Google Scholar 

  • Bellos E, Tzivanidis C, Antonopoulos K, Gkinis G (2016) Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy 94:213–222

    CAS  Google Scholar 

  • Bigiani L, Maccato C, Gasparotto A, Sada C, Barreca D (2019) Structure and properties of Mn3O4 thin films grown on single crystal substrates by chemical vapor deposition. Mater Chem Phys 223:591–596

    CAS  Google Scholar 

  • Bovard BG (1988) Derivation of a matrix describing a rugate dielectric thin film. Appl Opt 27(10):1998–2005

    CAS  Google Scholar 

  • Bovard BG (1993) Rugate filter theory: an overview. Appl Opt 32(28):5427–5442

    CAS  Google Scholar 

  • Cao F, McEnaney K, Chen G, Ren Z (2014) A review of cermet-based spectrally selective solar absorbers. Energy Environ Sci 7(5):1615–1627

    CAS  Google Scholar 

  • Cespedes E, Wirz M, Sanchez-Garcia J, Alvarez-Fraga L, Escobar-Galindo R, Prieto C (2014) Novel Mo–Si3N4 based selective coating for high temperature concentrating solar power applications. Sol Energy Mater Sol Cells 122:217–225

    CAS  Google Scholar 

  • Cespedes E, Rodriguez-Palomo A, Salas-Colera E, Fonda E, Jimenez-Villacorta F, Vila M, de Andres A, Prieto C (2018) Role of Al2O3 antireflective layer on the exceptional durability of Mo–Si–N-based spectrally selective coatings in air at high temperature. ACS Appl Energy Mater 1(11):6152–6160

    Google Scholar 

  • Chamberlin R, Skarman J (1966) Chemical spray deposition process for inorganic films. J Electrochem Soc 113(1):86–89

    CAS  Google Scholar 

  • Chandrashekara M, Yadav A (2017) An experimental study of the effect of exfoliated graphite solar coating with a sensible heat storage and Scheffler dish for desalination. Appl Therm Eng 123:111–122

    Google Scholar 

  • Cheng Z, He Y, Cui F, Xu R, Tao Y (2012) Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol Energy 86(6):1770–1784

    Google Scholar 

  • Cheng J, Wang C, Wang W, Du X, Liu Y, Xue Y, Wang T, Chen B (2013) Improvement of thermal stability in the solar selective absorbing Mo-Al2O3 coating. Sol Energy Mater Sol Cells 109:204–208

    CAS  Google Scholar 

  • Chopra K, Reddy G (1986) Optically selective coatings. Pramana 27(1–2):193–217

    CAS  Google Scholar 

  • Coccia G, Di Nicola G, Colla L, Fedele L, Scattolini M (2016) Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: numerical simulation of the yearly yield. Energy Convers Manag 118:306–319

    CAS  Google Scholar 

  • Conrado LS, Rodriguez-Pulido A, Calderón G (2017) Thermal performance of parabolic trough solar collectors. Renew Sustain Energy Rev 67:1345–1359

    Google Scholar 

  • Dan A, Biswas A, Sarkar P, Kashyap S, Chattopadhyay K, Barshilia HC, Basu B (2018) Enhancing spectrally selective response of W/WAlN/WAlON/Al2O3-Based nanostructured multilayer absorber coating through graded optical constants. Sol Energy Mater Sol Cells 176:157–166

    CAS  Google Scholar 

  • Dias D, Rebouta L, Costa P, Al-Rjoub A, Benelmeki M, Tavares C, Barradas N, Alves E, Santilli P, Pischow K (2017) Optical and structural analysis of solar selective absorbing coatings based on AlSiOx: W cermets. Sol Energy 150:335–344

    CAS  Google Scholar 

  • Dobrowolski J (1965) Completely automatic synthesis of optical thin film systems. Appl Opt 4(8):937–946

    Google Scholar 

  • Elam JW, Mane AU, Yanguas-gil A, Libera JA (2017) Refractory solar selective coatings. U.S. patent application 15/017, 548

  • El-Mahallawy N, Atia MR, Khaled A, Shoeib M (2018) Design and simulation of different multilayer solar selective coatings for solar thermal applications. Mater Res Express 5(4):046402

    Google Scholar 

  • Esposito S, Antonaia A, Addonizio M, Aprea S (2009) Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Films 517(21):6000–6006

    CAS  Google Scholar 

  • Fleury V, Watters WA, Allam L, Devers T (2002) Rapid electroplating of insulators. Nature 416(6882):716

    CAS  Google Scholar 

  • Flores V, Almanza R (2004) Behavior of the compound wall copper-steel receiver with stratified two-phase flow regimen in transient states when solar irradiance is arriving on one side of receiver. Sol Energy 76(1–3):195–198

    CAS  Google Scholar 

  • Freeman J, Hellgardt K, Markides CN (2015) An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications. Appl Energy 138:605–620

    Google Scholar 

  • Fuqiang W, Zhexiang T, Xiangtao G, Jianyu T, Huaizhi H, Bingxi L (2016) Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube. Energy 114:275–292

    Google Scholar 

  • Fuqiang W, Ziming C, Jianyu T, Yuan Y, Yong S, Linhua L (2017) Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renew Sustain Energy Rev 79:1314–1328

    Google Scholar 

  • Gao XH, Qiu XL, Li X-T, Theiss W, Chen B-H, Guo H-X, Zhou T-H, Liu G (2019) Structure, thermal stability and optical simulation of ZrB2 based spectrally selective solar absorber coatings. Sol Energy Mater Sol Cells 193:178–183

    CAS  Google Scholar 

  • Garnett JM (1904) XII. Colours in metal glasses and in metallic films. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 203(359–371):385–420

    CAS  Google Scholar 

  • Ghasemi SE, Ranjbar AA (2017) Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl Therm Eng 118:807–816

    Google Scholar 

  • Giglio A, Lanzini A, Leone P, Garcia MMR, Moya EZ (2017) Direct steam generation in parabolic-trough collectors: a review about the technology and a thermo-economic analysis of a hybrid system. Renew Sustain Energy Rev 74:453–473

    Google Scholar 

  • Gong X, Wang F, Wang H, Tan J, Lai Q, Han H (2017) Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Sol Energy 144:185–202

    Google Scholar 

  • Guo S, Chu Y, Liu D, Chen X, Xu C, Coimbra CF, Zhou L, Liu Q (2017) The dynamic behavior of once-through direct steam generation parabolic trough solar collector row under moving shadow conditions. J Sol Energy Eng 139(4):041002

    Google Scholar 

  • Hachicha AA, Rodriguez I, Ghenai C et al (2018) Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation. Appl Energy 214(C):152–165

    Google Scholar 

  • Hans K, Latha S, Bera P, Barshilia HC (2018) Hafnium carbide based solar absorber coatings with high spectral selectivity. Sol Energy Mater Sol Cells 185:1–7

    CAS  Google Scholar 

  • Hassani S, Saidur R, Mekhilef S, Hepbasli A (2015) A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf 90:121–130

    CAS  Google Scholar 

  • Heras I, Guillen E, Lungwitz F, Rincon-Llorente G, Munnik F, Schumann E, Azkona I, Krause M, Escobar-Galindo R (2018) Design of high-temperature solar-selective coatings based on aluminium titanium oxynitrides AlyTi1-y(OxN1–x). Part 1: advanced microstructural characterization and optical simulation. Sol Energy Mater Sol Cells 176:81–92

    CAS  Google Scholar 

  • Hernandez-Pinilla D, Rodriguez-Palomo A, Alvarez-Fraga L, Cespedes E, Prieto J, Muñoz-Martin A, Prieto C (2016) MoSi2–Si3N4 absorber for high temperature solar selective coating. Sol Energy Mater Sol Cells 152:141–146

    CAS  Google Scholar 

  • Irvine T Jr, Hartnett J, Eckert E (1958) Solar collector surfaces with wavelength selective radiation characteristics. Sol Energy 2(3–4):12–16

    Google Scholar 

  • Islam MT, Huda N, Abdullah A, Saidur R (2018) A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew Sustain Energy Rev 91:987–1018

    Google Scholar 

  • Kasaeian A, Daviran S, Azarian RD, Rashidi A (2015) Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag 89:368–375

    CAS  Google Scholar 

  • Khelifa A, Soum-Glaude A, Khamlich S, Glenat H, Balghouthi M, Guizani A, Maaza M, Dimassi W (2019) Optical simulation, characterization and thermal stability of Cr2O3/Cr/Cr2O3 multilayer solar selective absorber coatings. J Alloy Compd 783:533–544

    CAS  Google Scholar 

  • Kumar A, Prakash O, Kaviti AK (2017) A comprehensive review of Scheffler solar collector. Renew Sustain Energy Rev 77:890–898

    Google Scholar 

  • Lampert CM (1979) Coatings for enhanced photothermal energy collection I. Selective absorbers. Solar Energy Mater 1(5–6):319–341

    CAS  Google Scholar 

  • Levy F (2016) Film growth and epitaxy: methods. In: Reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-803581-8.01012-2

  • Li H, He Y, Liu Z, Huang Y, Jiang B (2017a) Synchronous steam generation and heat collection in a broadband Ag–TiO2 core-shell nanoparticle-based receiver. Appl Therm Eng 121:617–627

    CAS  Google Scholar 

  • Li Q, Tehrani SSM, Taylor RA (2017b) Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage. Energy 121:220–237

    Google Scholar 

  • Liu Y, Wang C, Xue Y (2012) The spectral properties and thermal stability of NbTiON solar selective absorbing coating. Sol Energy Mater Sol Cells 96:131–136

    CAS  Google Scholar 

  • Liu H, Yang B, Mao M, Liu Y, Chen Y, Cai Y, Fu D, Ren F, Wan Q, Hu X (2020) Enhanced thermal stability of solar selective absorber based on nano-multilayered TiAlON films deposited by cathodic arc evaporation. Appl Surf Sci 501:144025

    CAS  Google Scholar 

  • Manikandan G, Iniyan S, Goic R (2019) Enhancing the optical and thermal efficiency of a parabolic trough collector-a review. Appl Energy 235:1524–1540

    CAS  Google Scholar 

  • McDonald GE (1975) Spectral reflectance properties of black chrome for use as a solar selective coating. Sol Energy 17(2):119–122

    CAS  Google Scholar 

  • Meng J, Guo R, Li H, Zhao L, Liu X, Li Z (2018) Microstructure and thermal stability of Cu/Zr0. 3Al0. 7 N/Zr0. 2Al0. 8 N/Al34O60N6 cermet-based solar selective absorbing coatings. Appl Surf Sci 440:932–938

    CAS  Google Scholar 

  • Munoz J, Abanades A (2011) Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy 88(11):4139–4149

    Google Scholar 

  • Mwesigye A, Huan Z, Meyer JP (2016) Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol VP-1 nanofluid. Energy Convers Manag 120:449–465

    CAS  Google Scholar 

  • Nunes C, Teixeira V, Collares-Pereira M, Monteiro A, Roman E, Martin-Gago J (2002) Deposition of PVD solar absorber coatings for high-efficiency thermal collectors. Vacuum 67(3–4):623–627

    CAS  Google Scholar 

  • Odeh S, Morrison G, Behnia M (1998) Modelling of parabolic trough direct steam generation solar collectors. Sol Energy 62(6):395–406

    Google Scholar 

  • Osorio JD, Rivera-Alvarez A (2019) Performance analysis of parabolic trough collectors with double glass envelope. Renew Energy 130:1092–1107

    Google Scholar 

  • Ouagued M, Khellaf A, Loukarfi L (2013) Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils. Energy Convers Manag 75:191–201

    Google Scholar 

  • Pakkala A, Putkonen M (2010) Atomic layer deposition. In: Handbook of deposition technologies for films and coatings. William Andrew Publishing, pp 364–391

  • Pakzad E, Ranjbar Z, Ghahari M (2019) Synthesized of octahedral cupper chromite spinel for spectrally selective absorber (SSA) coatings. Prog Org Coat 132:21–28

    CAS  Google Scholar 

  • Peterson R, Ramsey J (1975) Thin film coatings in solar- thermal power systems. J Vac Sci Technol 12(1):174–181

    CAS  Google Scholar 

  • Philibert C (2010) Technology roadmap: concentrating solar power. Organisation for Economic Co-operation and Development/International Energy Agency

  • Powell KM, Rashid K, Ellingwood K, Tuttle J, Iverson BD (2017) Hybrid concentrated solar thermal power systems: a review. Renew Sustain Energy Rev 80:215–237

    Google Scholar 

  • Price H, Lupfert E, Kearney D, Zarza E, Cohen G, Gee R, Mahoney R (2002) Advances in parabolic trough solar power technology. J Sol Energy Eng 124(2):109–125

    Google Scholar 

  • Qiu Y, Li M-J, He Y-L, Tao W-Q (2017) Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Appl Therm Eng 115:1255–1265

    CAS  Google Scholar 

  • Qiu X-L, Gao X-H, Zhou T-H, Chen B-H, Lu J-Z, Guo H-X, Li X-T, Liu G (2019) Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings. Sol Energy 181:88–94

    CAS  Google Scholar 

  • Qu M, Archer D.H, Yin H (2009) A linear parabolic trough solar collector performance model. In: ASME 2007 energy sustainability conference. American Society of Mechanical Engineers Digital Collection, pp 663–670

  • Macias JD, Herrera-Zamora DM, Lizama-Tzec FI, Bante-Guerra J, Ares-Muzio OE, Oskam G, Rubio HR-P, Alvarado-Gil JJ, Arancibia-Bulnes C, Ramos-Sanchez V, et al. (2017) Optical and thermal properties of selective absorber coatings under CSP conditions. In: AIP conference proceedings, p 120001

  • Reddy K, Kumar KR, Ajay C (2015) Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renew Energy 77:308–319

    Google Scholar 

  • Rodriguez-Palomo A, Cespedes E, Hernandez-Pinilla D, Prieto C (2018) High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite. Sol Energy Mater Sol Cells 174:50–55

    CAS  Google Scholar 

  • Rubin EB, Chen Y, Chen R (2019) Optical properties and thermal stability of Cu spinel oxide nanoparticle solar absorber coatings. Sol Energy Mater Sol Cells 195:81–88

    CAS  Google Scholar 

  • Ruppin R (1978) Validity range of the Maxwell–Garnett theory. Physica Status Solidi 87(2):619–624

    CAS  Google Scholar 

  • Sadati SS, Qureshi FU, Baker D (2015) Energetic and economic performance analyses of photovoltaic, parabolic trough collector and wind energy systems for Multan, Pakistan. Renew Sustain Energy Rev 47:844–855

    Google Scholar 

  • Saito T, Iba R, Ono S, Imada G, Yasui K (2019) Growth characteristics of ZnO thin films produced via catalytic reaction-assisted chemical vapor deposition. J Vac Sci Technol A Vac Surf Films 37(3):030904

    Google Scholar 

  • Seeley J, Liddell HM, Chen T (1973) Extraction of Tschebysheff design data for the lowpass dielectric multilayer. Opt Acta Int J Opt 20(8):641–661

    Google Scholar 

  • Selvakumar N, Barshilia HC, Rajam K, Biswas A (2010) Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. Sol Energy Mater Sol Cells 94(8):1412–1420

    CAS  Google Scholar 

  • Selvakumar P, Somasundaram P, Thangavel P (2014) Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Convers Manag 85:505–510

    CAS  Google Scholar 

  • Sest E, Dravzivc G, Genorio B, Jerman I (2018) Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Sol Energy Mater Sol Cells 176:19–29

    CAS  Google Scholar 

  • Shaheed AA, Radhi RM, Abbood MH (2018) Design, construction, and testing of a parabolic trough solar concentrator system for hot water and moderate temperature steam generation. Kufa J Eng 9(1):42–59

    Google Scholar 

  • Sheng P (1980) Pair-cluster theory for the dielectric constant of composite media. Phys Rev B 22(12):6364

    CAS  Google Scholar 

  • Sokhansefat T, Kasaeian A, Kowsary F (2014) Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev 33:636–644

    CAS  Google Scholar 

  • Sonawane PD, Bupesh Raja V (2018) An overview of concentrated solar energy and its applications. Int J Ambient Energy 39(8):898–903

    CAS  Google Scholar 

  • Subramani J, Nagarajan P, Mahian O, Sathyamurthy R (2018) Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renew Energy 119:19–31

    CAS  Google Scholar 

  • Suriwong T, Bunmephiphit C, Wamae W, Banthuek S (2018) Influence of Ni–Al coating thickness on spectral selectivity and thermal performance of parabolic trough collector. Mater Renew Sustain Energy 7(3):14

    Google Scholar 

  • Tabor H (1958) Solar energy research: program in the new desert research institute in Beersheba. Sol Energy 2(1):3–6

    Google Scholar 

  • Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    CAS  Google Scholar 

  • Wamae W, Suriwong T, Threrujirapapong T (2018) Influence of tin content on spectral selectivity and thermal conductivity of Sn–Al2O3 solar selective absorber. Mater Renew Sustain Energy 7(1):2

    Google Scholar 

  • Wang X, Yu X, Fu S, Lee E, Kekalo K, Liu J (2018) Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems. J Appl Phys 123(3):033104

    Google Scholar 

  • Xu X, Dehghani G, Ning J, Li P (2018) Basic properties of eutectic chloride salts NaCl–KCl–ZnCl2 and NaCl–KCl–MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA. Sol Energy 162:431–441

    CAS  Google Scholar 

  • Yang Y (2012) The study of nanostructured solar selective coatings. Doctoral dissertation, University of York

  • Yasinskiy A, Navas J, Aguilar T, Alcántara R, Gallardo JJ, Sanchez-Coronilla A, Martin EI, De Los Santos D, Fernandez-Lorenzo C (2018) Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants. Renew Energy 119:809–819

    CAS  Google Scholar 

  • Yue S, Yueyan S, Fengchun W (2003) High-temperature optical properties and stability of AlxOy-AlNx-Al solar selective absorbing surface prepared by DC magnetron reactive sputtering. Sol Energy Mater Sol Cells 77(4):393–403

    CAS  Google Scholar 

  • Zarza E, Valenzuela L, Leon J, Hennecke K, Eck M, Weyers HD, Eickhoff M (2004) Direct steam generation in parabolic troughs: final results and conclusions of the DISS project. Energy 29(5–6):635–644

    CAS  Google Scholar 

  • Zhang HL, Baeyens J, Degreve J, Caceres G (2013) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22(2):466–481

    Google Scholar 

  • Zhang P, Cheng J, Jin Y, An X (2018) Evaluation of thermal physical properties of molten nitrate salts with low melting temperature. Solar Energy Materials and Solar Cells 176:36–41

    CAS  Google Scholar 

  • Zhao S (2007) Spectrally selective solar absorbing coatings prepared by Dc magnetron sputtering. Doctoral dissertation, Acta Universitatis Upsaliensis

Download references

Acknowledgements

The authors acknowledge the language editing and technical editing for grammar errors support received from Dr. Anurag Kumar, Assistant Professor, School of Languages and Literature, SMVD University and Dr. Garima Gupta, Assistant Professor, Department of English, University of Jammu, J & K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anand.

Ethics declarations

Conflict of interest Statement

The author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thappa, S., Chauhan, A., Sawhney, A. et al. Thermal selective coatings and its enhancement characteristics for efficient power generation through parabolic trough collector (PTC). Clean Techn Environ Policy 22, 557–577 (2020). https://doi.org/10.1007/s10098-020-01820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-020-01820-3

Keywords

Navigation