Skip to main content

Advertisement

Log in

Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The present work reports the photo-biomodulatory effect of red (632.8 nm) and near infrared (785 and 830 nm) lasers on burn injury in Swiss albino mice. Animals were induced with a 15-mm full thickness burn injury and irradiated with various fluences (1, 2, 3, 4, and 6 J/cm2) of each laser wavelength under study having a constant fluence rate (8.49 mW/cm2). The size of the injury following treatment was monitored by capturing the wound images at regular time intervals until complete healing. Morphometric assessment indicated that the group treated with 3-J/cm2 fluence of 830 nm had a profound effect on healing as compared to untreated controls and various fluences of other wavelengths under study. Histopathological assessment of wound repair on treatment with an optimum fluence (3 J/cm2) of 830 nm performed on days 2, 6, 12, and 18 post-wounding resulted in enhanced wound repair with migration of fibroblasts, deposition of collagen, and neovascularization as compared to untreated controls. The findings of the present study have clearly demonstrated that a single exposure of 3-J/cm2 fluence at 830-nm enhanced burn wound healing progression in mice, which is equivalent to 5 % povidone iodine treatment (reference standard), applied on a daily basis till complete healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Frontiers in bioscience : a journal and virtual library 9:283–289

    Article  CAS  Google Scholar 

  2. Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P (2010) Wound healing in the 21st century. J Am Acad Dermatol 63(5):866–881. doi:10.1016/j.jaad.2009.10.048

    Article  PubMed  Google Scholar 

  3. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. doi:10.1177/0022034509359125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monaco JL, Lawrence WT (2003) Acute wound healing an overview. Clin Plast Surg 30(1):1–12

    Article  PubMed  Google Scholar 

  5. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. The Journal of international medical research 37(5):1528–1542

    Article  CAS  PubMed  Google Scholar 

  6. Kao CC, Garner WL (2000) Acute Burns. Plast Reconstr Surg 101(7):2482–2493

    Article  PubMed  Google Scholar 

  7. Atiyeh BS, Hayek SN, Gunn SW (2005) New technologies for burn wound closure and healing—review of the literature. Burns : journal of the International Society for Burn Injuries 31(8):944–956. doi:10.1016/j.burns.2005.08.023

    Article  Google Scholar 

  8. Fan WPL, Rashid M, Enoch S (2010) Current advances in modern wound healing. Wounds UK 6(3):22–36

    Google Scholar 

  9. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-response : a publication of International Hormesis Society 7(4):358–383. doi:10.2203/dose-response.09-027.Hamblin

    Article  Google Scholar 

  10. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in cutaneous medicine and surgery 32(1):41–52

    PubMed  PubMed Central  Google Scholar 

  11. Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S (2012) Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 20(2):226–235. doi:10.1111/j.1524-475X.2012.00771.x

    Article  Google Scholar 

  12. Peplow PV, Chung TY, Ryan B, Baxter GD (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29(5):285–304. doi:10.1089/pho.2010.2846

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. The Journal of investigative dermatology 120(5):849–857. doi:10.1046/j.1523-1747.2003.12133.x

    Article  CAS  PubMed  Google Scholar 

  14. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39(9):706–715. doi:10.1002/lsm.20549

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration—an in vivo experimental study. Photochem Photobiol 86(6):1364–1372. doi:10.1111/j.1751-1097.2010.00791.x

    Article  CAS  PubMed  Google Scholar 

  16. Gupta A, Dai T, Hamblin MR (2014) Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci 29(1):257–265. doi:10.1007/s10103-013-1319-0

    Article  PubMed  Google Scholar 

  17. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. doi:10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  18. Prabhu V, Rao SB, Chandra S, Kumar P, Rao L, Guddattu V, Satyamoorthy K, Mahato KK (2012) Spectroscopic and histological evaluation of wound healing progression following Low Level Laser Therapy (LLLT). J Biophotonics 5(2):168–184. doi:10.1002/jbio.201100089

    Article  PubMed  Google Scholar 

  19. Erdle BJ, Brouxhon S, Kaplan M, Vanbuskirk J, Pentland AP (2008) Effects of continuous-wave (670-nm) red light on wound healing. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 34(3):320–325. doi:10.1111/j.1524-4725.2007.34065.x

    CAS  Google Scholar 

  20. Abdullahi A, Amini-Nik S, Jeschke MG (2014) Animal models in burn research. Cellular and molecular life sciences : CMLS 71(17):3241–3255. doi:10.1007/s00018-014-1612-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, Weiss ID, Pal B, Wald O, Ad-El D, Fujii N, Arenzana-Seisdedos F, Jung S, Galun E, Gur E, Peled A (2006) Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. The Journal of investigative dermatology 126(2):468–476. doi:10.1038/sj.jid.5700069

    Article  CAS  PubMed  Google Scholar 

  22. Hadis MA, Zainal SA, Holder MJ, Carroll JD, Cooper PR, Milward MR, Palin WM (2016) The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers Med Sci 31(4):789–809. doi:10.1007/s10103-016-1914-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Prindeze NJ, Moffatt LT, Shupp JW (2012) Mechanisms of action for light therapy: a review of molecular interactions. Experimental biology and medicine 237(11):1241–1248. doi:10.1258/ebm.2012.012180

    Article  CAS  PubMed  Google Scholar 

  24. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49(1):1–17. doi:10.1016/S1011-1344(98)00219-X

    Article  CAS  Google Scholar 

  25. Bayat M, Vasheghani MM, Razavi N (2006) Effect of low-level helium-neon laser therapy on the healing of third-degree burns in rats. J Photochem Photobiol B Biol 83(2):87–93. doi:10.1016/j.jphotobiol.2005.12.009

    Article  CAS  Google Scholar 

  26. Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M (2005) Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B Biol 78(2):171–177. doi:10.1016/j.jphotobiol.2004.08.012

    Article  CAS  Google Scholar 

  27. Mun S, Cheon M, Kim SH, Choi N, Kim S, Yoo Y, Lim S (2013) The effect of laser diode irradiation on wound healing of rat skin. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology 15(6):318–325. doi:10.3109/14764172.2013.807116

    Article  Google Scholar 

  28. Chiarotto GB, Neves LM, Esquisatto MA, Do Amaral ME, Dos Santos GM, Mendonca FA (2014) Effects of laser irradiation (670-nm InGaP and 830-nm GaAlAs) on burn of second-degree in rats. Lasers Med Sci 29(5):1685–1693. doi:10.1007/s10103-014-1573-9

    Article  PubMed  Google Scholar 

  29. Lee GY, Kim WS (2012) The systemic effect of 830-nm LED phototherapy on the wound healing of burn injuries: A controlled study in mouse and rat models. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology 14(2):107–110. doi:10.3109/14764172.2011.649762

    Article  Google Scholar 

  30. Hegde VN, Prabhu V, Rao SB, Chandra S, Kumar P, Satyamoorthy K, Mahato KK (2011) Effect of laser dose and treatment schedule on excision wound healing in diabetic mice. Photochem Photobiol 87(6):1433–1441. doi:10.1111/j.1751-1097.2011.00991.x

    Article  CAS  PubMed  Google Scholar 

  31. de Moraes JM, Eterno de Oliveira Mendonca D, Moura VB, Oliveira MA, Afonso CL, Vinaud MC, Bachion MM, de Souza Lino R Jr (2013) Anti-inflammatory effect of low-intensity laser on the healing of third-degree burn wounds in rats. Lasers Med Sci 28(4):1169–1176. doi:10.1007/s10103-012-1213-1

    Article  PubMed  Google Scholar 

  32. Rezende SB, Ribeiro MS, Nunez SC, Garcia VG, Maldonado EP (2007) Effects of a single near-infrared laser treatment on cutaneous wound healing: biometrical and histological study in rats. J Photochem Photobiol B Biol 87(3):145–153. doi:10.1016/j.jphotobiol.2007.02.005

    Article  CAS  Google Scholar 

  33. Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, Bala Singh S (2015) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 8(6):489–501. doi:10.1002/jbio.201400058

    Article  CAS  PubMed  Google Scholar 

  34. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B Biol 81(2):98–106. doi:10.1016/j.jphotobiol.2005.07.002

    Article  CAS  Google Scholar 

  35. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361. doi:10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  36. Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky K-E, Moan J (2008) Lasers in medicine. Rep Prog Phys 71(5):056701

    Article  CAS  Google Scholar 

  37. de Kock M (1985) Topical burn therapy comparing povidone-iodine ointment or cream plus aserbine, and povidone-iodine cream. The Journal of hospital infection 6(Suppl A):127–132

    Article  PubMed  Google Scholar 

  38. Vermeulen H, Westerbos SJ, Ubbink DT (2010) Benefit and harm of iodine in wound care: a systematic review. The Journal of hospital infection 76(3):191–199. doi:10.1016/j.jhin.2010.04.026

    Article  CAS  PubMed  Google Scholar 

  39. Goldenheim PD (1993) An appraisal of povidone-iodine and wound healing. Postgrad Med J 69(Suppl 3):S97–105

    PubMed  Google Scholar 

  40. Campbell N, Campbell D (2013) Evaluation of a non-adherent, povidone-iodine dressing in a case series of chronic wounds. J Wound Care 22(8):401–402. doi:10.12968/jowc.2013.22.8.401, 404-406

    Article  CAS  PubMed  Google Scholar 

  41. Daroczy J (2006) Quality control in chronic wound management: the role of local povidone-iodine (Betadine) therapy. Dermatology 212(Suppl 1):82–87. doi:10.1159/000089204

    Article  CAS  PubMed  Google Scholar 

  42. Norman D (2003) The use of povidone-iodine in superficial partial-thickness burns. Br J Nurs 12(6 Suppl):S30–36. doi:10.12968/bjon.2003.12.Sup1.11250

    Article  PubMed  Google Scholar 

  43. Yuksel EB, Yildirim AM, Bal A, Kuloglu T (2014) The effect of different topical agents (silver sulfadiazine, povidone-iodine, and sodium chloride 0.9%) on burn injuries in rats. Plastic surgery international 2014:907082. doi:10.1155/2014/907082

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dai T, Huang YY, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR (2010) Topical antimicrobials for burn wound infections. Recent patents on anti-infective drug discovery 5(2):124–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steen M (1993) Review of the use of povidone-iodine (PVP-I) in the treatment of burns. Postgrad Med J 69(Suppl 3):S84–92

    PubMed  Google Scholar 

  46. Lane N (2006) Cell biology: power games. Nature 443(7114):901–903. doi:10.1038/443901a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank DAE-BRNS, Govt. of India for funding (Grant no. 2012/34/47). Authors also thank Prof. K. Satyamoorthy, Director, School of Life Sciences (SLS) for his support and Manipal University for providing necessary facilities at School of Life Sciences, Manipal University to conduct the study. We extend our gratitude to Dr. Vasudevan T. G, Associate Professor, SLS for his support in scientifically editing the manuscript. Our thanks are also due to Mr. Sudhakar Kotian and Mr. Dheeraj for their help in animal handling and care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kishore Mahato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnakar, B., Rao, B.S.S., Prabhu, V. et al. Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice. Lasers Med Sci 31, 1741–1750 (2016). https://doi.org/10.1007/s10103-016-2044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2044-2

Keywords

Navigation