Skip to main content

Advertisement

Log in

Comparison of apical irrigant solution extrusion among conventional and laser-activated endodontic irrigation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the amount of extruded endodontic irrigant among needle-syringe irrigation (NSI) and laser-activated irrigation (LAI) regimens. Twenty extracted maxillary central incisors were prepared utilizing GT professional rotary files (size 40, taper 0.06). Irrigation was performed with two 27 G irrigation needles (notched open ended (ON) and single side vented (SV)) each at two different irrigant volumetric flow rates (VFR)—0.05 ml/s (3 ml/min) and 0.10 ml/s (6 ml/min). LAI was performed with Er:YAG (erbium-doped yttrium aluminum garnet) using different fiber types (X-Pulse-14/400 cylindrical tip, Preciso- 14/300 flat cylindrical tip, PIPS- 14/400 quartz tapered tip). The Er:YAG laser with a wavelength of 2940 nm (Lightwalker AT, Fotona, Ljubljana, Slovenia) was used according to the following protocol: 10 mJ per pulse, 15 Hz, pulse duration 50 μs. Irrigation time was 60 s for all protocols. Precision syringe pump (PSP) maintained constant irrigant volumetric flow rate. Apically extruded irrigant was collected and net weighed for each protocol (N = 10). Data were analyzed by t tests and Kruskal-Wallis. All LAI regimens had statistically significant lower irrigant extrusion compared with NSI except for the SV 27 G needle used with 0.05 ml/s VFR when compared with the Preciso fiber tip (p = 0,230). The largest amount of extruded irrigant was with the ON 27 G needle at the 0.10 ml/s VFR, while the smallest was after LAI with PIPS fiber tip. The lower quantity of apically extruded irrigant during LAI (X-Pulse and PIPS) points out a safer endodontic irrigation method compared with conventional irrigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khademi A, Zamani Naser A, Bahreinian Z, Mehdizadeh M, Najarian M, Khazaei S (2017) Root morphology and canal configuration of first and second maxillary molars in a selected iranian population: a cone-beam computed tomography evaluation. Iran Endod J 12:288–292. https://doi.org/10.22037/iej.v12i3.13708

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peters OA, Schönenberger K, Laib A (2001) Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 34:221–230. https://doi.org/10.1046/j.1365-2591.2001.00373.x

    Article  CAS  PubMed  Google Scholar 

  3. Baumgartner JC, Mader CL (1987) A scanning electron microscopic evaluation of four root canal irrigation regimens. J Endod 13:147–157. https://doi.org/10.1016/S0099-2399(87)80132-2

    Article  CAS  PubMed  Google Scholar 

  4. Haapasalo M, Endal U, Zandi H, Coil JM (2005) Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top 10:77–102. https://doi.org/10.1111/j.1601-1546.2005.00135.x

    Article  Google Scholar 

  5. Haapasalo M, Shen Y, Wang Z, Gao Y (2014) Irrigation in endodontics. Br Dent J 216:299–303. https://doi.org/10.1038/sj.bdj.2014.204

    Article  CAS  PubMed  Google Scholar 

  6. Psimma Z, Boutsioukis C, Vasiliadis L, Kastrinakis E (2013) A new method for real-time quantification of irrigant extrusion during root canal irrigation ex vivo. Int Endod J 46:619–631. https://doi.org/10.1111/iej.12036

    Article  CAS  PubMed  Google Scholar 

  7. Gu LS, Kim JR, Ling J et al (2009) Review of contemporary irrigant agitation techniques and devices. J Endod 35:791–804. https://doi.org/10.1016/j.joen.2009.03.010

    Article  PubMed  Google Scholar 

  8. Cameron JA (1987) The synergistic relationship between ultrasound and sodium hypochlorite: a scanning electron microscope evaluation. J Endod 13:541–545. https://doi.org/10.1016/S0099-2399(87)80034-1

    Article  CAS  PubMed  Google Scholar 

  9. Sabins RA, Johnson JD, Hellstein JW (2003) A comparison of the cleaning efficacy of short-term sonic and ultrasonic passive irrigation after hand instrumentation in molar root canals. J Endod 29:674–678. https://doi.org/10.1097/00004770-200310000-00016

    Article  PubMed  Google Scholar 

  10. De Moor RJ, Blanken J, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Med Sci 41:520–523. https://doi.org/10.1002/lsm.20798

    Article  Google Scholar 

  11. De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J (2010) Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J Endod 36:1580–1583. https://doi.org/10.1016/j.joen.2010.06.007

    Article  PubMed  Google Scholar 

  12. Coluzzi DJ, Parker SP (2017) Lasers in dentistry - current concepts. Laser -assisted endodontics, Springer Nature

    Book  Google Scholar 

  13. Meire MA, Poelman D, De Moor RJ (2014) Optical properties of root canal irrigants in the 300-3,000-nm wavelength region. Lasers Med Sci 29:1557–1562. https://doi.org/10.1007/s10103-013-1307-4

    Article  PubMed  Google Scholar 

  14. DiVito E, Lloyd A (2012) ER:YAG laser for 3-dimensional debridement of canal systems: use of photon-induced photoacoustic streaming. Dent Today 31(122):124–127

    Google Scholar 

  15. Gregorčič P, Jezeršek M, Možina J (2012) Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries. J Biomed Opt 17:075006. https://doi.org/10.1117/1.jbo.17.7.075006

    Article  PubMed  Google Scholar 

  16. George R, Walsh LJ (2008) Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study. J Endod 34:706–708. https://doi.org/10.1016/j.joen.2008.03.003

    Article  PubMed  Google Scholar 

  17. Peeters HH, De Moor RJ (2015) Measurement of pressure changes during laser-activated irrigant by an erbium, chromium: yttrium, scandium, gallium, garnet laser. Lasers Med Sci 30:1449–1455. https://doi.org/10.1007/s10103-014-1605-5

    Article  PubMed  Google Scholar 

  18. Pedullà E, Genovese C, Campagna E, Tempera G, Rapisarda E (2012) Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J 45:865–870. https://doi.org/10.1111/j.1365-2591.2012.02044.x

    Article  PubMed  Google Scholar 

  19. Brown DC, Moore BK, Brown CE Jr, Newton CW (1995) An in vitro study of apical extrusion of sodium hypochlorite during endodontic canal preparation. J Endod 21:587–591. https://doi.org/10.1016/S0099-2399(06)81108-8

    Article  CAS  PubMed  Google Scholar 

  20. Desai P, Himel V (2009) Comparative safety of various intracanal irrigation systems. J Endod 35:545–549. https://doi.org/10.1016/j.joen.2009.01.011

    Article  PubMed  Google Scholar 

  21. Beeson TJ, Hartwell GR, Thornton JD, Gunsolley JC (1998) Comparison of debris extruded apically in straight canals: conventional filing versus profile. 04 taper series 29. J Endod 24:18–22. https://doi.org/10.1016/S0099-2399(98)80206-9

    Article  CAS  PubMed  Google Scholar 

  22. Ferraz CC, Gomes NV, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ (2001) Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques. Int Endod J 34:354–358. https://doi.org/10.4103/0976-237X.76390

    Article  CAS  PubMed  Google Scholar 

  23. Tinaz AC, Alacam T, Uzun O, Maden M, Kayaoglu G (2005) The effect of disruption of apical constriction on periapical extrusion. J Endod 31:533–535. https://doi.org/10.1097/01.don.0000152294.35507.35

    Article  PubMed  Google Scholar 

  24. Hülsmann M, Rödig T, Nordmeyer S (2007) Complications during root canal irrigation. Endod Top 16:27–63. https://doi.org/10.1111/j.1601-1546.2009.00237.x

    Article  Google Scholar 

  25. Khan S, Niu LN, Eid AA, Looney SW, Didato A, Roberts S, Pashley DH, Tay FR (2013) Periapical pressures developed by nonbinding irrigation needles at various irrigation delivery rates. J Endod 39:529–533. https://doi.org/10.1016/j.joen.2013.01.001

    Article  PubMed  Google Scholar 

  26. Arslan H, Capar ID, Saygili G, Gok T, Akcay M (2014) Effect of photon-initiated photoacoustic streaming on removal of apically placed dentinal debris. Int Endod J 47:1072–1077. https://doi.org/10.1111/iej.12251

    Article  CAS  PubMed  Google Scholar 

  27. Silva PB, Krolow AM, Pilownic KJ, Casarin RP, Lima RK, Leonardo Rde T, Pappen FG (2016) Apical extrusion of debris and irrigants using different irrigation needles. Braz Dent J 27:192–195. https://doi.org/10.1590/0103-6440201600382

    Article  PubMed  Google Scholar 

  28. Uzunoglu-Özyürek E, Küçükkaya Eren S, Karahan S (2018) Effect of root canal sealers on the fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig 22:2475–2485. https://doi.org/10.1007/s00784-018-2540-9

    Article  PubMed  Google Scholar 

  29. Boutsioukis C, Lambrianidis T, Kastrinakis E (2009) Irrigant flow within a prepared root canal using various flow rates: a Computational Fluid Dynamics study. Int Endod J 42:144–155. https://doi.org/10.1111/j.1365-2591.2008.01503.x

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Haapasalo M, Shen Y, Wu H, Li B, Ruse ND, Zhou X (2009) Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation. J Endod 35:1282–1287. https://doi.org/10.1016/j.joen.2009.06.018

    Article  PubMed  Google Scholar 

  31. Šnjarić D, Čarija Z, Braut A, Halaji A, Kovačević M, Kuiš D (2012) Irrigation of human prepared root canal-ex vivo based computational fluid dynamics analysis. Croat Med J 53:470–479. https://doi.org/10.3325/cmj.2012.53.470

    Article  PubMed  PubMed Central  Google Scholar 

  32. Boutsioukis C, Psimma Z, Kastrinakis E (2014) The effect of flow rate and agitation technique on irrigant extrusion ex vivo. Int Endod J 47:487–496. https://doi.org/10.1111/iej.12176

    Article  CAS  PubMed  Google Scholar 

  33. Guivarc’h M, Ordioni U, Ahmed HM, Cohen S, Catherine JH, Bukiet F (2017) Sodium hypochlorite accident: a systematic review. J Endod 43:16–24. https://doi.org/10.1016/j.joen.2016.09.023

    Article  PubMed  Google Scholar 

  34. Peeters HH, Mooduto L (2013) Radiographic examination of apical extrusion of root canal irrigants during cavitation induced by Er,Cr:YSGG laser irradiation: an in vivo study. Clin Oral Investig 17:2105–2112. https://doi.org/10.1007/s00784-012-0910-2

    Article  PubMed  Google Scholar 

  35. Yao K, Satake K, Watanabe S, Ebihara A, Kobayashi C, Okiji T (2017) Effect of laser energy and tip insertion depth on the pressure generated outside the apical foramen during Er:YAG laser-activated root canal irrigation. Photomed Laser Surg 35:682–687. https://doi.org/10.1089/pho.2017.4268

    Article  CAS  PubMed  Google Scholar 

  36. Yost RA, Bergeron BE, Kirkpatrick TC, Roberts MD, Roberts HW, Himel VT, Sabey KA (2015) Evaluation of 4 different irrigating systems for apical extrusion of sodium hypochlorite. J Endod 41:1530–1534. https://doi.org/10.1016/j.joen.2015.05.007

    Article  PubMed  Google Scholar 

  37. Arslan H, Akcay M, Ertas H, Capar ID, Saygili G, Meşe M (2015) Effect of PIPS technique at different power settings on irrigating solution extrusion. Lasers Med Sci 30:1641–1645. https://doi.org/10.1007/s10103-014-1633-1

    Article  PubMed  Google Scholar 

  38. Lukač N, Suhovršnik T, Lukač M, Jezeršek M (2016) Ablation characteristics of quantum square pulse mode dental erbium laser. J Biomed Opt 21:15012. https://doi.org/10.1117/1.JBO.21.1.015012

    Article  PubMed  Google Scholar 

  39. Matsumoto H, Yoshimine Y, Akamine A (2011) Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod 37:839–843. https://doi.org/10.1016/j.joen.2011.02.035

    Article  PubMed  Google Scholar 

  40. Lloyd A, Uhles JP, Clement DJ, Garcia-Godoy F (2014) Elimination of intracanal tissue and debris through a novel laser-activated system assessed using high-resolution micro-computed tomography: a pilot study. J Endod 40:584–587. https://doi.org/10.1016/j.joen.2013.10.040

    Article  PubMed  Google Scholar 

  41. Verstraeten J, Jacquet W, De Moor RJ, Meire MA (2017) Hard tissue debris removal from the mesial root canal system of mandibular molars with ultrasonically and laser-activated irrigation: a micro-computed tomography study. Lasers Med Sci 32:1965–1970. https://doi.org/10.1007/s10103-017-2297-4

    Article  CAS  PubMed  Google Scholar 

  42. Koch JD, Jaramillo DE, DiVito E, Peters OA (2016) Irrigant flow during photon-induced photoacoustic streaming (PIPS) using particle image velocimetry (PIV). Clin Oral Investig 20:381–386. https://doi.org/10.1007/s00784-015-1562-9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Vidas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was approved by the Ethical board of the School of Medicine Rijeka and the Ethical board of the Clinical hospital center Rijeka.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidas, J., Snjaric, D., Braut, A. et al. Comparison of apical irrigant solution extrusion among conventional and laser-activated endodontic irrigation. Lasers Med Sci 35, 205–211 (2020). https://doi.org/10.1007/s10103-019-02846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02846-w

Keywords

Navigation