Skip to main content
Log in

On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present two modified versions of the primal-dual splitting algorithm relying on forward–backward splitting proposed in V\(\tilde{\mathrm{u}}\) (Adv Comput Math 38(3):667–681, 2013) for solving monotone inclusion problems. Under strong monotonicity assumptions for some of the operators involved we obtain for the sequences of iterates that approach the solution orders of convergence of \(\mathcal{{O}}(\frac{1}{n})\) and \(\mathcal{{O}}(\omega ^n)\), for \(\omega \in (0,1)\), respectively. The investigated primal-dual algorithms are fully decomposable, in the sense that the operators are processed individually at each iteration. We also discuss the modified algorithms in the context of convex optimization problems and present numerical experiments in image processing and pattern recognition in cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-tresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  4. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    Google Scholar 

  5. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61(1), 35–65 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for fnding zeros of sums of maximally monotone operators. SIAM J. Optimiz. 23(4), 2011–2036 (2013)

    Article  MATH  Google Scholar 

  7. Boţ, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization. J. Math. Imaging Vis. doi:10.1007/s10851-013-0486-8

  8. Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optimiz. 23(4), 2541–2565 (2013)

    Article  MATH  Google Scholar 

  9. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optimiz. 21(4), 1230–1250 (2011)

    Article  MATH  Google Scholar 

  10. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  11. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chi, E.C., Lange, K.: Splitting methods for convex clustering. arXiv:1304.0499 [stat.ML] (2013)

  13. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite. Lipschitzian, and parallel-sum type monotone operators. Set Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in \(2\) and \(3\) space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  18. Hocking, T., Vert, J., Bach, F., Joulin, A.: Clusterpath: an algorithm for clustering using convex fusion penalties. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue (2011)

  19. Lindsten, F., Ohlsson, H., Ljung, L.: Just relax and come clustering! A convexication of k-means clustering, Technical report from Automatic Control, Linköpings Universitet, Report no.: LiTH-ISY-R-2992, (2011)

  20. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence \(O(1/k^2)\). Doklady AN SSSR (translated as Soviet Math. Docl.) 269, 543–547 (1983)

  21. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Prog. 103(1), 127–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1), 209–216 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimiz. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simons, S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optimiz. 29(1), 119–138 (1991)

    Article  MATH  Google Scholar 

  26. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optimiz. 38(2), 431–446 (2000)

    Article  MATH  Google Scholar 

  27. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  29. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration, Cam Reports 08–34 UCLA, Center for Applied Mathematics (2008)

Download references

Acknowledgments

The authors are grateful to anonymous reviewers for remarks and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioan Boţ.

Additional information

Radu Ioan Boţ: Research partially supported by DFG (German Research Foundation), project BO 2516/4-1.

Ernö Robert Csetnek: Research supported by DFG (German Research Foundation), project BO 2516/4-1.

André Heinrich: Research supported by the European Union, the European Social Fund (ESF) and prudsys AG in Chemnitz.

Christopher Hendrich: Research supported by a Graduate Fellowship of the Free State Saxony, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boţ, R.I., Csetnek, E.R., Heinrich, A. et al. On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150, 251–279 (2015). https://doi.org/10.1007/s10107-014-0766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0766-0

Keywords

Mathematics Subject Classification

Navigation