Skip to main content
Log in

A gentle, geometric introduction to copositive optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper illustrates the fundamental connection between nonconvex quadratic optimization and copositive optimization—a connection that allows the reformulation of nonconvex quadratic problems as convex ones in a unified way. We focus on examples having just a few variables or a few constraints for which the quadratic problem can be formulated as a copositive-style problem, which itself can be recast in terms of linear, second-order-cone, and semidefinite optimization. A particular highlight is the role played by the geometry of the feasible set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. Ser. B 124, 33–43 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxation for quadratically constrained quadratic programming: a review and comparisons. Math. Program. Ser. B 129(1), 129–157 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, London (2003)

    Book  MATH  Google Scholar 

  4. Bienstock, D.: A note on polynomial solvability of the cdt problem. Preprint, Department of Industrial Engineering and Operations Research, Columbia University, New York, NY. Revised 2014. Submitted (2013)

  5. Bienstock D., Michalka A.: Polynomial solvability of variants of the trust-region subproblem. In: Proceedings of the 25th ACM–SIAM symposium on discrete algorithms (SODA 2014), pp. 380–390, (2014)

  6. Bomze, I., Schachinger, W., Uchida, G.: Think co(mpletely)positive! Matrix properties, examples and a clustered bibliography on copositive optimization. J. Glob. Optim. 52, 423–445 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bomze, I.M.: Copositive optimization–recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bomze, I.M., Dür, M., Teo, C.-P.: Copositive optimization. Optima 89, 2–8 (2012)

    Google Scholar 

  9. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math Program 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burer S.: Copositive programming. In: Anjos, M., Lasserre, J. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, International Series in Operational Research and Management Science, pp. 201–218. Springer, New York (2011)

  11. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burer S., Yang B.: The trust region subproblem with non-intersecting linear constraints. Manuscript, Department of Management Sciences, University of Iowa, Iowa City, IA, USA, February 2013. Math. Program. Ser. A 149, 253–264 (2015)

  13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  14. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, New York (2010)

    Chapter  Google Scholar 

  15. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol. 2. Springer, New York (1988)

  17. Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jeyakumar, V., Li, G.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. (2013). doi:10.1007/s10107-013-0716-2

  19. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, Volume 149 of IMA Volumes in Mathematics and Its Applications, pp. 157–270. Springer, New York (2009)

    Chapter  Google Scholar 

  20. Maxfield, J.E., Minc, H.: On the matrix equation \(X^{\prime } X=A\). Proc. Edinburgh Math. Soc. 2(13), 125–129 (1962/1963)

  21. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. I. Convex underestimating problems. Math. Program. 10(2), 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yang, B., Burer, S.: A two-variable analysis of the two-trust-region subproblem. Manuscript, Department of Management Sciences, University of Iowa, Iowa City, IA, USA, November 2013. Revised October (2014)

  25. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author expresses his sincere thanks to three anonymous referees for comments and insights that have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Burer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burer, S. A gentle, geometric introduction to copositive optimization. Math. Program. 151, 89–116 (2015). https://doi.org/10.1007/s10107-015-0888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0888-z

Mathematics Subject Classification

Navigation