Skip to main content
Log in

On mathematical programming with indicator constraints

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we review the relevant literature on mathematical optimization with logical implications, i.e., where constraints can be either active or disabled depending on logical conditions to hold. In the case of convex functions, the theory of disjunctive programming allows one to formulate these logical implications as convex nonlinear programming problems in a space of variables lifted with respect to its original dimension. We concentrate on the attempt of avoiding the issue of dealing with large NLPs. In particular, we review some existing results that allow to work in the original space of variables for two relevant special cases where the disjunctions corresponding to the logical implications have two terms. Then, we significantly extend these special cases in two different directions, one involving more general convex sets and the other with disjunctions involving three terms. Computational experiments comparing disjunctive programming formulations in the original space of variables with straightforward bigM ones show that the former are computationally viable and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 34, 391–401 (1983)

    Article  MathSciNet  Google Scholar 

  2. Aktürk, S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Technical Report BCOL Research Report 07.01, Industrial Engineering and Operations Research, University of California, Berkeley (2007)

  3. Ascheuer, N.: Hamiltonian Path Problems in the On-line Optimization of Flexible Manufacturing Systems. PhD thesis, Technische Universität Berlin (1995)

  4. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 259–324 (1993)

    Google Scholar 

  7. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)

    Article  MATH  Google Scholar 

  8. Balas, E., Jeroslow, R.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., Salvagnin, D.: On handling indicator constraints in mixed-integer programming. Technical Report OR/13/1, revised OR/14/20, DEI, University of Bologna (2014)

  10. Belotti, P., Liberti, L., Lodi, A., Nannicini, G., Tramontani, A.: Disjunctive inequalities: applications and extensions. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 2, pp. 1441–1450. Wiley, New York (2011)

    Google Scholar 

  11. Ben-Ameur, W., Ouorou, A.: Mathematical models of the delay-constrained routing problem. Algorithmic Oper. Res. 1, 94–103 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Blażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127, 317–331 (2000)

    Article  MATH  Google Scholar 

  13. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük, O., Woeginger, G. (eds.) Integer Programming and Combinatorial Optimization, Volume 6655 of Lecture Notes in Computer Science, pp. 52–64. Springer, Berlin (2011)

    Google Scholar 

  14. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4, 151–179 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bonami, P., Linderoth, J.T., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. In: Majoub, R. (ed.) Progress in Combinatorial Optimization, pp. 521–544. Wiley/ISTE, New York (2011)

    Google Scholar 

  16. Brooks, J.P.: Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59, 467–479 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Conjunctive Normal Form. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001)

  19. Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag. Sci. 23, 789–810 (1977)

    Article  MATH  Google Scholar 

  20. Dash, S., Günlük, O., Lodi, A., Tramontani, A.: A time bucket formulation for the traveling salesman problem with time windows. INFORMS J. Comput. 24, 132–147 (2012)

    Article  MathSciNet  Google Scholar 

  21. Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf. Serv. Oper. Manag. 8, 92–97 (2006)

    Google Scholar 

  22. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128, 205–230 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  24. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Furman, K., Grossmann, I.E., Sawaya, N.: A useful algebraic representation of disjunctive convex sets using the perspective function. In: Conference talk MINLP, Pittsburgh (2014)

  26. Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26, 83–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete–continuous optimization models through generalized disjunctive programming. AIChE J. 59(9), 3276–3295 (2013)

    Article  Google Scholar 

  28. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separaable convex quadratic transportation-cost UFL. Technical Report RC24213 (W0703–042), IBM Research Division (2007)

  29. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, Volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 61–89. Springer, New York (2012)

    Chapter  Google Scholar 

  30. Hijazi, H.: Mixed-Integer Nonlinear Optimization Approaches for Network Design in Telecommunications. PhD thesis, Université d’Aix-Marseille II (2010)

  31. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed integer nonlinear programs featuring “on/off” constraints. Comput. Optim. Appl. 52, 537–558 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hijazi, H., Liberti, L.: Constraint qualification failure in second-order cone formulations of unbounded disjunctions. Technical Report, NICTA, Canberra ACT Australia (2014)

  33. Jeroslow, R., Lowe, J.: Modelling with integer varibales. In: Korte, B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach II, Volume 22 of Mathematical Programming Studies, pp. 167–184. Springer, Berlin (1984)

    Chapter  Google Scholar 

  34. Kılınç, M.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Programming. PhD thesis, University of Wisconsin-Madison (2011)

  35. Kılınç, M., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear programs. Technical Report TR1681, Computer Sciences Department, University of Wisconsin-Madison (2010)

  36. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: Miplib 2010. Math. Program. Comput. 3, 103–163 (2011)

    Article  MathSciNet  Google Scholar 

  37. Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. SIAM-MOS series on Optimization. SIAM, Philadelphia (2014)

    Google Scholar 

  38. Lawrence, S.: Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques. GSIA, Carnegie Mellon University, Pittsburgh (1984)

    Google Scholar 

  39. Lee, S., Grossmann, I.E.: New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24, 2125–2141 (2000)

    Article  Google Scholar 

  40. Lodi, A.: Indicator constraints in mixed-integer programming. In: Conference Talk MIP, Columbus (2014)

  41. Lodi, A.: Mixed integer programming computation. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer, Berlin (2010)

    Google Scholar 

  42. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tramontani, A.: Lift-and-project cuts in CPLEX 12.5.1. In: Conference Talk INFORMS, Minneapolis (2013)

Download references

Acknowledgments

The second author acknowledges the support of MIUR, Italy, under the grant PRIN 2012. The fourth author acknowledges the support of the EU ITN 316647 “Mixed-Integer Nonlinear Optimization” (MINO). We are indebted to four anonymous referees for a careful reading and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonami, P., Lodi, A., Tramontani, A. et al. On mathematical programming with indicator constraints. Math. Program. 151, 191–223 (2015). https://doi.org/10.1007/s10107-015-0891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0891-4

Keywords

Mathematics Subject Classification

Navigation