Skip to main content
Log in

Positive semidefinite rank

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \(M \in \mathbb {R}^{p \times q}\) be a nonnegative matrix. The positive semidefinite rank (psd rank) of M is the smallest integer k for which there exist positive semidefinite matrices \(A_i, B_j\) of size \(k \times k\) such that \(M_{ij} = {{\mathrm{trace}}}(A_i B_j)\). The psd rank has many appealing geometric interpretations, including semidefinite representations of polyhedra and information-theoretic applications. In this paper we develop and survey the main mathematical properties of psd rank, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization-provably. In: Proceedings of the 44th Symposium on Theory of Computing (STOC), ACM, pp. 145–162 (2012)

  2. Barvinok, A.: A remark on the rank of positive semidefinite matrices subject to affine constraints. Discret. Comput. Geom. 25(1), 23–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barvinok, A.: Approximations of Convex Bodies by Polytopes and by Projections of Spectrahedra. arXiv preprint. arXiv:1204.0471 (2012)

  4. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific Pub Co Inc, Singapore (2003)

    Book  MATH  Google Scholar 

  5. Blekherman, G., Parrilo, P.A., Thomas, R. (eds.): Semidefinite Optimization and Convex Algebraic Geometry, vol 13 of MOS-SIAM Series on Optimization. SIAM (2012)

  6. Bocci, C., Carlini, E., Rapallo, F.: Perturbation of matrices and nonnegative rank with a view toward statistical models. SIAM J. Matrix Anal. Appl. 32(4), 1500–1512 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Briët, J., Dadush, D., Pokutta, S.: On the existence of 0/1 polytopes with high semidefinite extension complexity. Algorithms. ESA 2013. Lecture Notes in Computer Science. vol 8125, pp. 217–228. Springer, Berlin (2013)

  9. Brunner, N., Pironio, S., Acin, A., Gisin, N., Méthot, A.A., Scarani, V.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100(21), 210503 (2008)

    Article  MathSciNet  Google Scholar 

  10. Burgdorf, S., Laurent, M., Piovesan, T.: On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings. arXiv preprint arXiv:1502.02842 (2015)

  11. Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factorizations of nonnegative matrices. Linear Algebra Appl. 190, 149–168 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dur, M.: Copositive programming-a survey. In: Diehl., M. G., Francois, J., Elias, M. W. (eds.) Recent advances in optimization and its applications in engineering, Springer, Berlin, Heidelberg, pp. 3–20 (2010). doi:10.1007/978-3-642-12598-0_1

  13. Fawzi, H., Saunderson, J., Parrilo, P.A.: Sparse Sum-of-Squares Certificates on Finite Abelian Groups. arXiv preprint. arXiv:1503.01207 (2015)

  14. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pp 95–106. ACM (2012)

  15. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discrete Math. 313(1), 67–83 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frenkel, P.E., Weiner, M.: On vector configurations that can berealized in the cone of positive matrices. Linear Alg. Appl. 459, 465–474 (2014). doi:10.1016/j.laa.2014.07.017

    Article  MATH  MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness. W. H Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  18. Gillis, N., Glineur, F.: On the geometric interpretation of the nonnegative rank. Linear Algebra Appl. 437(11), 2685–2712 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goemans, M. X.: Smallest compact formulation for the permutahedron. Math. Prog. (2014). pp. 1–7 doi:10.1007/s10107-014-0757-1

  20. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factorizations. Math. Operat. Res. 38(2), 248–264 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gouveia, J., Robinson, R.Z., Thomas, R.R.: Polytopes of minimum positive semidefinite rank. Discrete Comput. Geom. 50(3), 679–699 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gouveia, J., Fawzi, H., Robinson, R.Z.: Rational and Real Positive Semidefinite Rank can be Different. arXiv preprint. arXiv:1404.4864 (2014)

  23. Gouveia, J., Robinson, R.Z., Thomas, R.R.:Worst-case results for positive semidefinite rank. Math. Program. 1–12 (2015). doi:10.1007/s10107-015-0867-4

  24. Hrubeš, P.: On the nonnegative rank of distance matrices. Inf. Process. Lett. 112, 457–461 (2012)

    Article  MATH  Google Scholar 

  25. Jain, R., Shi, Y., Wei, Z., Zhang, S.: Efficient protocols for generating bipartite classical distributions and quantum states. IEEE Trans. Inf. Theory 59(8), 5171–5178 (2013)

    Article  MathSciNet  Google Scholar 

  26. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  27. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. Ser. A. Control 1(2), 152–192 (1963)

    MATH  MathSciNet  Google Scholar 

  28. Laurent, M., Piovesan, T.: Conic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone. arXiv preprint. arXiv:1312.6643 (2013)

  29. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  30. Lee, T., Theis, D.O.: Support-Based Lower Bounds for the Positive Semidefinite Rank of a Nonnegative Matrix. arXiv preprint. arXiv:1203.3961 (2012)

  31. Lee, J. R., Raghavendra, P., Steurer, D.: Lower Bounds on the Size of Semidefinite Programming Relaxations. arXiv preprint. arXiv:1411.6317 (2014)

  32. Lee, T., Wei, Z., de Wolf, R.: Some Upper and Lower Bounds on Psd-rank arXiv preprint. arXiv:1407.4308 (2014)

  33. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Struct. Algorithms 34(3), 368–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27(4), 439–463 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lim, L.-H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chemometrics 23(7–8), 432–441 (2009)

    Google Scholar 

  36. Moitra, A.: An Almost Optimal Algorithm for Computing Nonnegative Rank. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposiumon Discrete Algorithms. chap. 104, pp. 1454–1464 (2013). doi:10.1137/1.9781611973105.104

  37. Mond, D., Smith, J., van Straten, D.: Stochastic factorizations, sandwiched simplices and the topology of the space of explanations. R. Soc. Proc. Math. Phys. Eng. Sci. 459(2039), 2821–2845 (2003)

    Article  MATH  Google Scholar 

  38. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  39. Nie, J., Ranestad, K., Sturmfels, B.: The algebraic degree of semidefinite programming. Math. Program. 122(2), 379–405 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pashkovich, K.: Extended formulations for combinatorial polytopes. PhD thesis, Otto-von-Guericke-Universität Magdeburg (2012)

  41. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Operat. Res. 23(2), 339–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM review. 49(3), 371–418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symb. Comput. 13(3), 255–299 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Renegar, J.: Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6(1), 59–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Scheiderer, C.: Semidefinite representation for convex hulls of real algebraic curves. arXiv preprint. arXiv:1208.3865 (2012)

  46. Stark, C. J., Harrow, A. W.: Compressibility of positive semidefinite factorizations and quantum models. arXiv preprint arXiv:1412.7437 (2014)

  47. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78(6), 062112 (2008)

    Article  Google Scholar 

  50. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. 43(3), 441–446 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Troy Lee for sharing his results on the psd rank of Kronecker products as well on the Hermitian psd rank. The authors also thank Thomas Rothvoß for his helpful input in Corollary 6 and his comments on an earlier draft, and Daniel Dadush for pointing out that the current stronger statement of Corollary 6 was implied by our original proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Fawzi.

Additional information

Fawzi and Parrilo were supported in part by AFOSR FA9550-11-1-0305. Gouveia was supported by the Centre for Mathematics at the University of Coimbra and Fundação para a Ciência e a Tecnologia, through the European program COMPETE/FEDER. Robinson was supported by the US NSF Graduate Research Fellowship through Grant DGE-1256082 and Thomas was supported by NSF Grant DMS-1115293.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fawzi, H., Gouveia, J., Parrilo, P.A. et al. Positive semidefinite rank. Math. Program. 153, 133–177 (2015). https://doi.org/10.1007/s10107-015-0922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0922-1

Mathematics Subject Classification

Navigation