Skip to main content
Log in

Set regularities and feasibility problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are particulary indebted to Alex Ioffe for thoughtful and persuasive discussions.

  2. We refer on several occasions to the preprint [22] because some definitions and results present there and used in the current article are not included in the published version [23].

References

  1. Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Set-Val. Var. Anal. 21, 93–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference, ESAIM Proc. 13, 1–17 (2003)

  3. Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Am. Math. Soc. 357, 3831–3863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Val. Anal. 1, 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Progr. 86, 135–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  9. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Val. Var. Anal. 21, 431–473 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Val. Var. Anal. 21, 475–5013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)

    Article  MATH  Google Scholar 

  13. Bunt, L.N.H.: Bitdrage tot de Theorie der Konvekse Puntverzamelingen. Ph.D. thesis, Univ. of Groningen, Amsterdam (1934)

  14. Burke, J.V., Deng, S.: Weak sharp minima revisited I. Basic theory. Control Cybern. 31, 439–469 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Burke, J.V., Deng, S.: Weak sharp minima revisited II. Application to linear regularity and error bounds. Math. Progr. 104, 235–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chui, C.K., Deutsch, F., Ward, J.D.: Constrained best approximation in Hilbert space. Constr. Approx. 6, 35–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  19. Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)

    Book  Google Scholar 

  20. Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory. 90, 385–414 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer Monographs in Mathematics. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  22. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Alternating projections and coupling slope. Preprint, arXiv:1401.7569 (2014)

  23. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15, 1637–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Val. Var. Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall Inc, Englewood Cliffs, N.J. (1974)

    MATH  Google Scholar 

  26. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23, 2397–2419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hirsch, M.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  28. Ioffe, A.D.: Approximate subdifferentials and applications III. The metric theory. Mathematika 36, 1–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ioffe, A.D.: Metric regularity. Theory and applications–a survey. Preprint, arXiv:1505.07920 (2015)

  31. Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Val. Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jameson, G.J.O.: The duality of pairs of wedges. Proc. Lond. Math. Soc. 24, 531–547 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Progr. 84, 137–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kruger, A.Y.: A covering theorem for set-valued mappings. Optimization 19, 763–780 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1, 101–126 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Kruger, A.Y.: About regularity of collections of sets. Set-Val. Anal. 14, 187–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13, 1737–1785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64, 49–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subregularity of collections of sets. Preprint

  40. Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164, 41–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kruger, A.Y., Thao, N.H.: Regularity of collections of sets and convergence of inexact alternating projections. J. Convex Anal. 23 (2016)

  43. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier. 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9, 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18, 643–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux Dérivées Partielles. Éditions du Centre National de la Recherche Scientifique. 87–89 (1962)

  49. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)

    Book  Google Scholar 

  50. Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Progr. 99, 521–538 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ng, K.F., Zang, R.: Linear regularity and \(\varphi \)-regularity of nonconvex sets. J. Math. Anal. Appl. 328, 257–280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Val. Anal. 9, 187–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. (2015). doi:10.1007/s10208-015-9253-0

  54. Pang, C.H.J.: First order constrained optimization algorithms with feasibility updates. Preprint, arXiv:1506.08247 (2015)

  55. Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  56. Phan, H.M.: Linear convergence of the Douglas-Rachford method for two closed sets. Optimization 65, 369–385 (2016)

  57. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)

    Google Scholar 

  59. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19, 62–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zheng, X.Y., Ng, K.F.: Metric subregularity for nonclosed convex multifunctions in normed spaces. ESAIM Control Optim. Calc. Var. 16, 601–617 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zheng, X.Y., Ng, K.F.: Metric subregularity for proximal generalized equations in Hilbert spaces. Nonlinear Anal. 75, 1686–1699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73, 413–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Russell Luke.

Additional information

AYK was supported by Australian Research Council, project DP160100854.

DRL was supported in part by German Israeli Foundation Grant G-1253-304.6 and Deutsche Forschungsgemeinschaft Research Training Grant 2088 TP-B5.

NHT was supported by German Israeli Foundation Grant G-1253-304.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, A.Y., Luke, D.R. & Thao, N.H. Set regularities and feasibility problems. Math. Program. 168, 279–311 (2018). https://doi.org/10.1007/s10107-016-1039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1039-x

Keywords

Mathematics Subject Classification

Navigation