Skip to main content
Log in

Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We develop a practical semidefinite programming (SDP) facial reduction procedure that utilizes computationally efficient approximations of the positive semidefinite cone. The proposed method simplifies SDPs with no strictly feasible solution (a frequent output of parsers) by solving a sequence of easier optimization problems and could be a useful pre-processing technique for SDP solvers. We demonstrate effectiveness of the method on SDPs arising in practice, and describe our publicly-available software implementation. We also show how to find maximum rank matrices in our PSD cone approximations (which helps us find maximal simplifications), and we give a post-processing procedure for dual solution recovery that generally applies to facial-reduction-based pre-processing techniques. Finally, we show how approximations can be chosen to preserve problem sparsity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This designation of primal (P) and dual (D), while standard in facial reduction literature, is opposite the convention used by semidefinite solvers such as SeDuMi. We will switch to the convention favored by solvers when we discuss our software implementation in Sect. 6.

References

  1. Ahmadi, A.A., Majumdar, A.: \(DSOS\) and \(SDSOS\) optimization: LP and SOCP-based alternatives to sum of squares optimization. In: Proceedings of the 48th Annual Conference on Information Sciences and Systems, pp. 1–5 (2014)

  2. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Protein structure by semidefinite facial reduction. In: Research in Computational Molecular Biology, pp. 1–11. Springer (2012)

  3. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Discrete Appl. Math. 119(1), 79–106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barker, G.P., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57(1), 15–32 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baston, V.: Extreme copositive quadratic forms. Acta Arith. 15(3), 319–327 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, A., Shaked-Monderer, N.: Completely positive matrices. World Scientific, Singapore (2003). ISBN 981-238-368-9. http://opac.inria.fr/record=b1130077

  8. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  9. Boman, E.G., Chen, D., Parekh, O., Toledo, S.: On factor width and symmetric \(H\)-matrices. Linear Algebra Appl. 405, 239–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein, J., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83(2), 495–530 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  13. Boyd, S., Mueller, M., O’Donoghue, B., Wang, Y.: Performance bounds and suboptimal policies for multi-period investment. Found. Trends Optim. 1(1), 1–69 (2013)

    Google Scholar 

  14. Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv. Math. 216(1), 302–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burkowski, F., Cheung, Y.-L., Wolkowicz, H.: Efficient use of semidefinite programming for selection of rotamers in protein conformations. Technical report, CORR: in progress, p. 2011. University of Waterloo, Waterloo, Ontario (2011)

  16. Burton, S., Youm, Y., Vinzant, C.: A real stable extension of the Vámos matroid polynomial. arXiv:1411.2038

  17. Chen, D., Toledo, S.: Combinatorial characterization of the null spaces of symmetric h-matrices. Linear Algebra Appl. 392, 71–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheung, Y.-L., Schurr, S., Wolkowicz, H.: Preprocessing and regularization for degenerate semidefinite programs. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, pp. 251–303. Springer, Berlin (2013)

    Chapter  Google Scholar 

  19. Choe, Y.-B., Oxley, J.G., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1), 88–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Klerk, E., Roos, C., Terlaky, T.: Initialization in semidefinite programming via a self-dual skew-symmetric embedding. Oper. Res. Lett. 20(5), 213–221 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diananda, P.H.: On non-negative forms in real variables some or all of which are non-negative. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 58, pp. 17–25. Cambridge Univ Press (1962)

  22. Fawzi, H., Parrilo, P.A.: Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank. arXiv preprint arXiv:1404.3240 (2014)

  23. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming (web page and software). http://cvxr.com/

  24. Gruber, G., Kruk, S., Rendl, F., Wolkowicz, H.: Presolving for semidefinite programs without constraint qualifications. https://pdfs.semanticscholar.org/61ca/fc993c23c6b94a1115292bcab45fb48bbc52.pdf (1998)

  25. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20(5), 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Löfberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. http://users.isy.liu.se/johanl/yalmip

  27. Löfberg, J.: Pre-and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54(5), 1007–1011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lourenço, B.F., Muramatsu, M., Tsuchiya, T.: Solving SDP completely with an interior point oracle (2015). arXiv preprint arXiv:1507.08065

  29. Luo, Z.-Q., Sturm, J.F., Zhang, S.: Duality results for conic convex programming. Technical report, Econometric Institute Research Papers (1997)

  30. Mittelmann, H.D.: An independent benchmarking of sdp and socp solvers. Math. Program. 95(2), 407–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo, P.: SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB. arXiv preprint arXiv:1310.4716 (2013)

  32. Pataki, G.: Handbook of semidefinite programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) The Geometry of Semidefinite Programming, pp. 29–65. Springer, Berlin (2000)

    Chapter  Google Scholar 

  33. Pataki, G.: Strong duality in conic linear programming: facial reduction and extended duals. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, pp. 613–634. Springer, Berlin (2013)

    Chapter  Google Scholar 

  34. Pataki, G.: Bad semidefinite programs: they all look the same. arXiv preprint arXiv:1112.1436 (2016)

  35. Pataki, G., Schmieta, S.: The DIMACS library of semidefinite-quadratic-linear programs. http://dimacs.rutgers.edu/Challenges/Seventh/Instances (1999)

  36. Permenter, F., Parrilo, P.A.: Basis selection for SOS programs via facial reduction and polyhedral approximations. In: Proceedings of the IEEE Conference on Decision and Control (2014)

  37. Posa, M., Tobenkin, M., Tedrake, R.: Lyapunov analysis of rigid body systems with impacts and friction via sums-of-squares. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (2013)

  38. Quist, A.J., de Klerk, E., Roos, C., Terlaky, T.: Copositive relaxation for general quadratic programming. Optim. Methods Softw. 9(1–3), 185–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77(1), 129–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semidefinite programming. SIAM J. Optim. 7(3), 641–662 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R .T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  42. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturm, J.F.: Error bounds for linear matrix inequalities. SIAM J. Optim. 10(4), 1228–1248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3—a matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tunçel, L., Wolkowicz, H.: Strong duality and minimal representations for cone optimization. Comput. Optim. Appl. 53(2), 619–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wagner, D.G., Wei, Y.: A criterion for the half-plane property. Discrete Math. 309(6), 1385–1390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Waki, H.: How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for polynomial optimization. Optim. Lett. 6(8), 1883–1896 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Waki, H., Muramatsu, M.: Facial reduction algorithms for conic optimization problems. J. Optim. Theory Appl. 158(1), 188–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Waki, H., Muramatsu, M.: A facial reduction algorithm for finding sparse sos representations. Oper. Res. Lett. 38(5), 361–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput. Optim. Appl. 53(3), 823–844 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96, 461–479 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ye, Y., Todd, M.J., Mizuno, S.: An \(\cal{O} (\sqrt{nL})\)-iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res. 19(1), 53–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thanks Mark Tobenkin for many helpful discussions, and Michael Posa and Anirudha Majumdar for testing early versions of the implemented algorithms. Michael Posa also provided the original (i.e. unreduced) SDP for Example 7.4. The authors thank Cynthia Vinzant for providing the Vámos matroid example \(\mathcal {V}_{10}\) and reference [14]. We thank Gábor Pataki and Johan Löfberg for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Permenter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permenter, F., Parrilo, P. Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone. Math. Program. 171, 1–54 (2018). https://doi.org/10.1007/s10107-017-1169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1169-9

Mathematics Subject Classification

Navigation