Skip to main content

Advertisement

Log in

Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus)

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

A mortality event of Cladocora caespitosa corals and the extent of bleaching, necrosis and pigmented areas in the colonies were studied at the southeastern coast of Cyprus during a prolonged period of higher than average sea temperature anomalies (summer/autumn 2012). With the use of scuba diving and image analysis software, we monitored the extent of mortality of 29 colonies of C. caespitosa by measuring and comparing the area percentage of healthy tissue, affected tissue (bleached, necrotic) and older mortality events (encrusted skeleton). In September 2012, on average, 24 % of the colonies surface area was affected (bleaching and/or necrosis). In October 2012, C. caespitosa showed on average 26.3 % of the colony surface area affected, evidence of continuing deterioration. At the same time, 10 % (3 of 29) of the colonies showed an increase in the pigmentation of previously bleached polyps in small and marginal areas (6–8 %). Irrespective of the amount, the regaining of pigments recorded is considered an important find. Corals and marine organisms in general in the Levantine Sea are affected greatly by warming events, to the extent where a very small percentage of polyps/colonies show resilience under thermal stress. Natural bleaching of C. caespitosa, even though limited to a few colonies and very small portions of tissue/polyps, was documented for the first time in the Levantine Sea. We conclude that temperature anomalies are associated with the mortality event. Whether prolonged higher temperature is the direct cause, or whether it acts synergistically with other factors should be the subject of further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Airi V, Gizzi F, Falini G, Levy O, Dubinsky Z, Goffredo S (2014) Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient. PLoS One 9(3):e91792. doi:10.1371/journal.pone.0091792

    Article  Google Scholar 

  • Armoza-Zvuloni R, Segal R, Kramarsky-Winter E, Loya Y (2011) Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar Ecol Progr Ser 426:149–159. doi:10.3354/meps09018

    Article  Google Scholar 

  • Ben-Haim Y, Banin E, Kushmaro A, Loya Y, Rosenberg E (1999) Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ Microbiol 1:223–229. doi:10.1046/j.1462-2920.1999.00027.x

    Article  CAS  Google Scholar 

  • Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662. doi:10.1038/347660a0

    Article  Google Scholar 

  • Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7:e34418. doi:10.1371/journal.pone.0034418

    Article  CAS  Google Scholar 

  • Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2012a) Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient. Front Zool 9:32. doi:10.1186/1742-9994-9-32

    Article  CAS  Google Scholar 

  • Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012b) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7(6):e37848. doi:10.1371/journal.pone.0037848

    Article  CAS  Google Scholar 

  • Casado-Amezua P, Garcia-Jimenez R, Kersting DK, Templado J, Coffroth MA, Merino P, Acevedo I, Machordom A (2011) Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral Cladocora caespitosa (Anthozoa, Scleractinia). J Hered 102:622–626. doi:10.1093/jhered/esr070

    Article  CAS  Google Scholar 

  • Cattaneo-Vietti R, Chemello R, Giannuzzi-Savelli R (1990) Atlas of Mediterranean Nudibranchs. La Conchiglia, Roma, p 264

    Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293. doi:10.1046/j.1461-0248.2000.00152.x

    Article  Google Scholar 

  • Chong-Seng K, Cole A, Pratchett M, Willis B (2011) Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs 30:473–481. doi:10.1007/s00338-010-0707-1

    Article  Google Scholar 

  • Cole A, Chong Seng K, Pratchett M, Jones G (2009) Coral-feeding fishes slow progression of black-band disease. Coral Reefs 28:965. doi:10.1007/s00338-009-0519-3

    Article  Google Scholar 

  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais F, Aguzzi J, Ballesteros E, Bianchi C, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M, Koukouras A, Lampadariou N, Laxamana E, López-Fé CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e1184. doi:10.1371/journal.pone.0011842

    Article  Google Scholar 

  • Crisci C, Bensoussan N, Romano J-C, Garrabou J (2011) Temperature anomalies and mortality events in marine communities: insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS One 6(9):e23814. doi:10.1371/journal.pone.0023814

    Article  CAS  Google Scholar 

  • Di Natale A (1978) Ulteriore segnalazione di Quoyula madreporarum (Sowerby, 1832) (Mollusca, Gastropoda) nel Mediterraneo. Memorie di Biologia Marina e di Oceanografia 8:151–154

    Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969. doi:10.1371/journal.pone.0013969

    Article  Google Scholar 

  • Fine M, Banin-Israely T, Rosenberg E, Loya Y (2002) Ultraviolet radiation prevents bleaching in the Mediterranean coral Oculina patagonica. Mar Ecol Progr Ser 226:249–254. doi:10.3354/meps226249

    Article  Google Scholar 

  • Garrabou J, Coma R, Bally M, Bensoussan N, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103. doi:10.1111/j.1365-2486.2008.01823.x

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509. doi:10.1111/j.1365-2486.1996.tb00063.x

    Article  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, London, pp 68–95

    Chapter  Google Scholar 

  • Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. Bull Mar Sci 87:767–794. doi:10.5343/bms.2010.1025

    Article  Google Scholar 

  • Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution and predators. Geol Rundsch 61:483–519. doi:10.1007/BF01896330

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Mar Biol 152:351–361. doi:10.1007/s00227-007-0695-z

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632. doi:10.1007/s00338-008-0362-y

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937. doi:10.4319/lo.2009.54.3.0930

    Article  CAS  Google Scholar 

  • Haguenauer A, Zuberer F, Ledoux JB, Aurelle D (2013) Adaptive abilities of the Mediterranean red coral Corallium rubrum in an heterogeneous and changing environment: from population to functional genetics. J Exp Mar Biol Ecol 449:349–357. doi:10.1016/j.jembe.2013.10.010

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, irradiance and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper 1797) and Seriatopora hystrix (Dana 1846). J Exp Mar Biol Ecol 129:279–303. doi:10.1016/0022-0981(89)90109-3

    Article  Google Scholar 

  • Houbrick RS (1992) Monograph of the genus Cerithium Bruguiere in the Indo-Pacific (Cerithiidae: Prosobranchia). Smithson Contrib Zool 510. doi:10.5479/si.00810282.510

  • Jiménez C, Cortés J (2003) Coral cover change associated to El Niño, eastern Pacific, 1992–2001. Mar Ecol 24:179–192. doi:10.1046/j.1439-0485.2003.03814.x

    Article  Google Scholar 

  • Jiménez IM, Larkum AWD, Ralph PJ, Kuhl M (2012) In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Mar Biol 159:1773–1782. doi:10.1007/s00227-012-1968-8

    Article  Google Scholar 

  • Jiménez C, Petrou A, Ivan C, Marija D, Evriviadou M, Hadjioanou L, Lange MA (2013a) Coral mass mortality associated to seawater temperature anomalies in the Levantine (Cyprus) and Adriatic (Croatia) Seas. Rapp Comm Int Mer Médit 40:655

    Google Scholar 

  • Jiménez C, Petrou A, Evrivadou M, Nikolaides A, Hadjioanou A, Lange MA (2013b) Coral mass mortality associated to the Summer 2012 seawater temperature anomalies in the Levantine Sea (Cyprus). Geophys Res Abstr 15:8021

    Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci 275:1359. doi:10.1098/rspb.2008.0069

    Article  CAS  Google Scholar 

  • Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436. doi:10.1111/j.1439-0485.2011.00508.x

    Article  Google Scholar 

  • Kersting DK, Bensoussan N, Linares C (2013) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS One 8:e70820. doi:10.1371/journal.pone.0070820

    Article  CAS  Google Scholar 

  • Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean-Sea. Limnol Oceanogr 36:424–432. doi:10.4319/lo.1991.36.3.0424

    Article  CAS  Google Scholar 

  • Kružić P (2014) Bioconstructions in the Mediterranean: present and future. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, pp 435–448. doi:10.1007/978-94-007-6704-1

  • Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536. doi:10.1007/s00338-003-0345-y

    Article  Google Scholar 

  • Kružić P, Srsen P, Benkovic L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa: Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491. doi:10.1007/s10347-012-0306-4

    Article  Google Scholar 

  • Kružić P, Srsen P, Cetinic K, Zavodnik D (2013) Coral tissue mortality of the coral Cladocora caespitosa caused by gastropod Coralliophila meyendorffi in the Mljet National Park (eastern Adriatic Sea). J Mar Biol Assoc UK 93:2101–2108. doi:10.1017/S0025315413000878

    Article  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 171:131–137. doi:10.3354/meps171131

    Article  Google Scholar 

  • Macias D, Garcia-Gorriz E, Stips A (2013) Understanding the causes of recent warming of Mediterranean waters. How much could be attributed to climate change? PLoS One 8:e81591. doi:10.1371/journal.pone.0081591

    Article  Google Scholar 

  • Miller M, Williams DE (2007) Coral disease outbreak at Navassa, a remote Caribbean island. Coral Reefs 26:97–101. doi:10.1007/s00338-006-0165-y

    Article  Google Scholar 

  • Morton B, Blackmore G, Kwok CT (2002) Corallivory and prey choice by Drupella rugosa Gastropoda Muricidae in Hong Kong. J Moll Stud 683:217–223. doi:10.1093/mollus/68.3.217

    Article  Google Scholar 

  • Nicolet KJ, Hoogenboom MO, Gardiner NM, Pratchett MS, Willis BL (2013) The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef. Coral Reefs 32:585–595. doi:10.1007/s00338-013-1010-8

    Article  Google Scholar 

  • Oliverio M, Taviani M, Chemello R (1997) A coral-associated epitoniid, new to the Red Sea (Prosobranchia, Ptenoglossa). Argonauta 9(10–12):3–10

    Google Scholar 

  • Oliverio M, Barco A, Modica MV, Richter A, Mariottini P (2009) Ecological barcoding of corallivory by second internal transcribed spacer sequences: hosts of coralliophiline gastropods detected by the cnidarian DNA in their stomach. Mol Ecol Resour 9:94–103. doi:10.1111/j.1755-0998.2008.02388.x

    Article  CAS  Google Scholar 

  • Onton K, Page CA, Wilson SK, Neale S, Armstrong S (2011) Distribution and drivers of coral disease at Ningaloo reef, Indian Ocean. Mar Ecol Prog Ser 433:75–84. doi:10.3354/meps09156

    Article  Google Scholar 

  • Oreskes N (2004) The scientific consensus on climate change. Science 307:355. doi:10.1126/science.1103618

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orru P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40:195–200. doi:10.1016/S0921-8181(03)00110-3

    Article  Google Scholar 

  • Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mass mortality of marine invertebrates: an unprecedented event in the Northwestern Mediterranean. CR Acad Sci Paris III 323:853–865. doi:10.1016/S0764-4469(00)01237-3

    Article  CAS  Google Scholar 

  • Por FD (1978) Lessepsian migration: the influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Ecol Stud 23. Springer, pp 228. doi: 10.1002/iroh.19800650224

  • Reynolds WR, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948. doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2

    Article  Google Scholar 

  • Richter A, Luque AA (2004a) Sex change in two Mediterranean species of Coralliophilidae (Mollusca: Gastropoda: Neogastropoda). J Mar Biol Assoc UK 84:383–392. doi:10.1017/S0025315404009324h

    Article  Google Scholar 

  • Richter A, Luque AA (2004b) Epitonium dendrophylliae (Gastropoda: Epitoniidae) feeding on Astroides calycularis (Anthozoa, Scleractinia). J Moll Stud 70:99–101. doi:10.1093/mollus/70.1.99

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24. doi:10.1007/s003380050221

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool (Modena) 72:271–276. doi:10.1080/11250000509356685

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Page C (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55. doi:10.1007/s00227-006-0329-x

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Page C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300. doi:10.5194/bg-7-289-2010

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Hoogenboom MO, Rottier C, Ramos-Espla A, Baker AC, Fine M, Ferrier-Pages C (2014) Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob Chang Biol. doi:10.1111/gcb.12571

    Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. doi:10.3354/meps07531

    Article  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269. doi:10.1038/40843

    Article  CAS  Google Scholar 

  • Saledhoust A, Negarestan H, Jami MJ, Morton B (2011) Corallivorous snails: first record of corallivory by Ergalatax junionae (Gastropoda: Muricidae) in the Persian Gulf. Mar Biodivers Rec 4:e99. doi:10.1017/S1755267211000777

    Article  Google Scholar 

  • Salinger MJ (2005) Climate variability and change: past, present and future: an overview. In: Salinger J, MVK Sivakumar, RP Motha (eds) Increasing climate variability and change. Springer, pp 9–29. doi:10.1007/1-4020-4166-7_3

  • Samuel-Rhoads Y, Zodiatis G, Hayes D, Georgiou G (2009) Mediterranean Sea surface temperature rise: 1985–2008. MED-Coast 09 Proc (http://www.medcoast.net)

  • Samuel-Rhoads Y, Ioan I, Zodiatis G, Stylianou S, Hayes D, Georgiou G (2010) Sea surface temperature and salinity rise in the Levantine basin. Rapp Comm Int Mer Médit 39:177

    Google Scholar 

  • Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. Energy Budg Mar Ecol 14:221–238. doi:10.1111/j.1439-0485.1993.tb00481.x

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  • Shafir S, Gur O, Rinkevich B (2008) A Drupella cornus outbreak in the northern Gulf of Eilat and changes in coral prey. Coral Reefs 27:379. doi:10.1007/s00338-008-0353-z

    Article  Google Scholar 

  • Shenkar N, Fine M, Kramarsky-Winter E, Loya Y (2006) Population dynamics of zooxanthellae during a bacterial bleaching event. Coral Reefs 25:223–227. doi:10.1007/s00338-006-0090-0

    Article  Google Scholar 

  • Spada G (1968) Osservazioni sull’habitat della Coralliophila (Babelomurex) babelis Requien, 1848. Conchiglie 4:170–176

    Google Scholar 

  • Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol 5:250–255. doi:10.1046/j.1462-2920.2003.00424.x

    Article  Google Scholar 

  • Tanaka T, Zohary T, Krom MD, Law CS, Pitta P, Psarra S et al (2007) Microbial community structure and function in the Levantine Basin of the eastern Mediterranean. Deep Sea Res I 54:1721–1743. doi:10.1016/j.dsr.2007.06.008

    Article  Google Scholar 

  • Tornaritis G (1987) Mediterranean Sea shells: Cyprus. Proodos, Nicosia, Cyprus, p 190

  • Torres JL, Armstrong RA, Weil E (2008) Enhanced ultraviolet radiation can terminate sexual reproduction in a Caribbean broadcasting species. J Exp Mar Biol Ecol 358:39–45. doi:10.1016/j.jembe.2008.01.022

    Article  Google Scholar 

  • Torres-Pérez JL, Armstrong RA (2012) Effects of UV radiation on the growth, photosynthetic and photoprotective components, and reproduction of the Caribbean shallow-water coral Porites furcata. Coral Reefs 31:1077–1091. doi:10.1007/s00338-012-0927-7

    Article  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen JH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148. doi:10.3354/meps314135

    Article  Google Scholar 

  • Vargas-Yanez M, Garcia M, Salat J, Garcia-Martinez M, Pascual J, Moya F (2008) Warming trends and decadal variability in the Western Mediterranean shelf. Glob Planet Change 63:177–184. doi:10.1016/j.gloplacha.2007.09.001

    Article  Google Scholar 

  • Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283. doi:10.1017/S0025315406014299

    Article  CAS  Google Scholar 

  • Wilkinson CR (1998) The 1997–1998 mass bleaching event around the world. In: Wilkinson CR (ed) Status of coral reefs of the world. Australian Institute of Marine Science, Cape Ferguson, pp 15–38. http://hdl.handle.net/1834/545

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr Monaco 11:1–284

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to AP Marine Environmental Consultancy Ltd for providing their vessel, diving equipment and their kind support with the logistics of the fieldwork. Thanks to Helmut Zibrowius and Diego Kersting for constructive advice and to Keith Walker as well as the whole group of divers who responded to our call for temperature readings and reports of dying corals from around the island. We are also grateful to A.A.K. Larnaca Napa Sea Cruises for taking us on board to visit study sites and to Viking Divers and Alpha Divers for providing valuable information. Thanks to the editors for the invitation to submit the manuscript and two anonymous reviewers for their constructive suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, C., Hadjioannou, L., Petrou, A. et al. Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus). Reg Environ Change 16, 1963–1973 (2016). https://doi.org/10.1007/s10113-014-0729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0729-2

Keywords

Navigation