Skip to main content
Log in

Improvement of creep resistance of polytetrafluoroethylene films by nano-inclusions

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To improve creep resistance of directional polytetrafluoroethylene (PTFE) films, epoxy grafted nano-SiO2 is mixed with PTFE powder before sintering and calender rolling. The aligned macromolecular chains (especially those in amorphous region) of the composite films can be bundled up by the nanoparticles to share the applied stress together. In addition, incorporation of silica nanoparticles increases crystallinity of PTFE and favors microfibrillation of PTFE in the course of large deformation. As result, PTFE films exhibit lower creep strain and creep rate, and higher tensile strength and hardness. The work is believed to open an avenue for manufacturing high performance fluoropolymers by nano-inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drobny, J.G., in “Technology of fluoropolymers”, ed. by Drobny, J.G., Taylor & Francis Group, Boca Raton, 2009, p. 30.

    Google Scholar 

  2. Scheirs, J., in “Modern fluoropolymers: high performance polymers for diverse applications”, ed. by Scheirs, J., John Wiley & Sons, New York, 1997, p. 2.

    Google Scholar 

  3. Iseki, S., Morozumi, M. and Atsuta, S., 1977, U.S. Pat., 4,026,863

  4. Martinsa, S.A., Dias, F.W., Nunes, L.S., Borgesa, L.A. and D’Almeidac, J.R., Procedia Eng., 2011, 10: 2651.

    Article  Google Scholar 

  5. Wang, Z.C., Kou, K.C., Liu, Z.W., Zhang, D.N., Bi, H., Chao, M. and Zhao, Q.X., Polym. Adv. Technol., 2012, 23: 545.

    Article  CAS  Google Scholar 

  6. Bruk, M.A., High Energ. Chem., 2006, 40: 357.

    Article  CAS  Google Scholar 

  7. Khatipov, S.A. and Artamonov, N.A., Russ. J. Gen. Chem., 2009, 79: 616.

    Article  CAS  Google Scholar 

  8. Martins, S., Borges, L. and D’Almeida, J.R., Macromol. Symp., 2011, 299/300: 92.

    Article  CAS  Google Scholar 

  9. Jamaguchi, D., Katoh, T., Sato, Y., Ikeda, S., Hirose, M., Aoki, Y., Lida, M., Oshima, A., Tabata, Y. and Washio, M., Macromol. Symp., 2002, 181: 201.

    Article  Google Scholar 

  10. Blanchet, T.A., in “Handbook of thermoplastics”, ed. by Olabisi, O., Marcel Dekker, New York, 1997, p. 987.

    Google Scholar 

  11. Oshima, A., Ikeda, S., Katoh, E. and Tabata, Y., Radiat. Phys. Chem., 2001, 62: 39.

    Article  CAS  Google Scholar 

  12. Koo, G.P., in “Fluoropolymers”, ed. by Wall, L.A., Wiley-Interscience, New York, 1972, p. 508.

    Google Scholar 

  13. Choi, K.J. and Spruiell, J.E., J. Polym. Sci. Polym. Phys., 2010, 48: 2248.

    Article  CAS  Google Scholar 

  14. Shah, D., Maiti, P., Jiang, D.D., Batt, C.A. and Giannelis, E.P., Adv. Mater., 2005, 17: 525.

    Article  CAS  Google Scholar 

  15. Starr, F.W., Schrøder, T.B. and Glotzer, S.C., Macromolecules, 2002, 35: 4481.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Xu, J. and Guo, B.H., Acta Polymerica Sinica (in Chinese), 2012, (1): 83.

  17. Li, L.Z., Zhang, X.Q., Luo, F.L., Zhao, Y. and Wang, D.J., Acta Polymerica Sinica (in Chinese), 2011, (10): 1218.

  18. Tang, Y.X., Lou, B.Y. and Liang, D.P., Acta Polymerica Sinica (in Chinese), 2011, (5): 516.

  19. Zhou, T.H., Ruan, W.H., Yang, J.L., Rong, M.Z., Zhang, M.Q. and Zhang, Z., Compos. Sci. Technol., 2007, 67: 2297.

    Article  CAS  Google Scholar 

  20. Wang, M.H., Ruan, W.H., Huang, Y.F., Ye, L., Rong, M.Z. and Zhang, M.Q., J. Mater. Chem., 2012, 22: 4592.

    Article  CAS  Google Scholar 

  21. Obata, Y., Sumitomo, T., Ijitsu, T., Matsuda, M. and Nomura, T., Polym. Eng. Sci., 2001, 41: 408.

    Article  CAS  Google Scholar 

  22. Yeung, C.K. and Jasse, B., J. Appl. Polym. Sci., 1982, 27: 4587.

    Article  CAS  Google Scholar 

  23. Rong, M.Z., Zhang, M.Q. and Ruan, W.H., Mater. Sci. Technol., 2006, 22: 787.

    Article  CAS  Google Scholar 

  24. Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep Rupture of Plastics (ASTM D2990-01), ASTM International, West Conshohocken, 2001.

  25. Zhang, M.Q., Rong, M.Z., Zeng, H.M., Schmitt, S., Wetzel, B. and Friedrich, K., J. Appl. Polym. Sci., 2001, 80: 2218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-hong Ruan  (阮文红).

Additional information

The work was financially supported by the National Natural Science Foundation of China (No. 51173207), Sino-Hungarian Scientific and Technological Cooperation Project (No. 2009DFA52660), Key projects of Guangdong Education Office (No. cxzd1101), and Natural Science Foundation of Guangdong (Nos. 2010B010800020, 2011B090500004, 2011BZ100051).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Xb., Wu, Cl., Rong, Mz. et al. Improvement of creep resistance of polytetrafluoroethylene films by nano-inclusions. Chin J Polym Sci 31, 377–387 (2013). https://doi.org/10.1007/s10118-013-1225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1225-8

Keywords

Navigation