Skip to main content
Log in

From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate)

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

2,5-Furandicarboxylic acid (2,5-FDCA) has been regarded as the ideal bio-based alternative to terephthalic acid (TPA). In recent years, great efforts have been made to synthesize 2,5-FDCA through the following methods: (1) oxidation of 5-hydroxymethylfurfural (HMF) in the presence of complex biocatalyst or metallic catalyst; (2) conversion of 2-furoic acid via the well-known Henkel Reaction. Herein, a new strategy for the synthesis of 2,5-FDCA from furan and acetic anhydride under mild condition is reported. The purity of the resulted 2,5-FDCA was above 99.9%. Acetic acid and iodoform generated in the reaction were recyclable and no other harmful by-products were detected. The thus-obtained 2,5-FDCA was applied for the preparation of poly(ethylene furandicarboxylate) (PEF) of high quality in terms of high molecular weight and good appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558.

    Article  CAS  PubMed  Google Scholar 

  2. Iwata, T. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215.

    Article  CAS  Google Scholar 

  3. Yu, R. L; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32(8), 1099–1110.

    Article  CAS  Google Scholar 

  4. Tao, Y. New polymerization methodology of amino Acid based on lactam polymerization. Acta Polymerica Sinica (in Chinese) 2016, (9), 1151–1159.

    Google Scholar 

  5. Abid, M.; Kamoun, W.; Gharbi, R. E.; Fradet, A. Copolyesters containing terephthalic and bio-based furanic units by melt-polycondensation. Macromol. Mater. Eng. 2008, 293, 39–44.

    Article  CAS  Google Scholar 

  6. Burgess, S. K.; Kriegel, R. M.; Koros, W. J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193.

    Article  CAS  Google Scholar 

  7. Zhu, J.; Cai, J.; Xie, W.; Chen, P. H.; Gazzano, M.; Scandola, M.; Gross, R. A. Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure. Macromolecules 2013, 46, 796–804.

    Article  CAS  Google Scholar 

  8. Ma, J. P.; Yu, X. F.; Xu, J.; Pang, Y. Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer 2012, 53, 4145–4151.

    Article  CAS  Google Scholar 

  9. Eerhart, A. J. J. E.; Faaij, A. P. C.; Patel, M. K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 2012, 5, 6407–6422.

    Article  CAS  Google Scholar 

  10. Albonetti, S.; Lolli, A.; Morandi, V.; Migliori, A.; Lucarelli, C.; Cavani, F. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylicacid over Au-based catalysts: optimization of active phaseand metal-support interaction. Appl. Cat. B: Environ. 2015, 163, 520–530.

    Article  CAS  Google Scholar 

  11. Thiyagarajan, S.; Pukin, A.; Haveren, J. V.; Lutz, M.; Es, D. S. V. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylicacid over Au-based catalysts: optimization of active phaseand metal-support interaction. RSC Adv. 2013, 3, 15678–15686.

    Article  CAS  Google Scholar 

  12. Verdeguer. P.; Merat. N.; Gaset. A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. Catal. A Chem. 1993, 85, 327–344.

    CAS  Google Scholar 

  13. Gaset, A., Rigal, L., Paillassa, G., Salome, J. P.; Fleche, G., 1986, U.S. Pat. 4,590,283.

    Google Scholar 

  14. Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. ChemInform abstract: 5-hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem. 2011, 13, 754–793.

    Article  CAS  Google Scholar 

  15. Howard, S. J., Sanborn, A. J., 2008, U.S. Pat. 20090156841.

    Google Scholar 

  16. Partenheimer, W.; Grushin, V. V. Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Adv. Synth. Catal. 2001, 343, 102–111.

    Article  CAS  Google Scholar 

  17. Han, X. W.; Geng, L.; Guo, Y.; Jia, R.; Liu, X. H.; Zhang, Y. G.; Wang, Y. Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst. Green Chem. 2016, 18, 1597–1604.

    Article  CAS  Google Scholar 

  18. Hang, X. W.; Li, C. Q.; Guo Y.; Liu, X. H.; Zhang, Y. G.; Wang, Y. G. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Appl. Catal. A: Gene 2016, 526, 1–8.

    Article  CAS  Google Scholar 

  19. Wang, F.; Yuan, Z. L.; Liu, B.; Chen, S. H.; Zhang, Z. H. Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over RuIII-incorporated zirconium phosphate catalyst. J. Ind. Eng. Chem. 2016, 38, 181–185.

    Article  CAS  Google Scholar 

  20. Gupta, N. K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem. 2011, 13, 824–827.

    Article  CAS  Google Scholar 

  21. Yi, G.; Teng, S. P.; Zhang, Y. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chem. 2016, 18, 979–983.

    Article  CAS  Google Scholar 

  22. Alboenyyil, S.; Lollia, A.; Morandi, V. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylicacid over Au-based catalysts: Optimization of active phaseand metal-support interaction. Appl. Cat. B: Environt. 2015, 163, 520–530.

    Article  CAS  Google Scholar 

  23. Villa, A.; Schiavoni, M.; Campisi, S.; Veith, G. M.; Prati, L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem 2013, 6, 609–612.

    Article  CAS  PubMed  Google Scholar 

  24. Dijkman, W. P.; Groothuis, D. E.; Fraaije, M. W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew. Chem. Int. Ed. 2014, 53, 6515–6518.

    Article  CAS  Google Scholar 

  25. McKenna, S. M.; Leimkühler, S.; Herter, S.; Turner, N. J.; Carnell, A. J. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chem. 2015, 17, 3271–3275.

    Article  CAS  Google Scholar 

  26. Qin, Y.; Li, Y.; Zong, M.; Wu, H.; Li, N. Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents. Green Chem. 2015, 17, 3718–3722.

    Article  CAS  Google Scholar 

  27. Carro, J.; Ferreira, P.; Rodriguez, L.; Prieto, A.; Serrano, A.; Balcells, B. 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J. 2014, 282, 3218–3229.

    Article  CAS  Google Scholar 

  28. Pan, T.; Deng, J.; Xu, Q.; Zuo, Y.; Guo, Q. X.; Fu, Y. Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization. ChemSusChem 2013, 6, 47–50.

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Carbon dioxide utilization via carbonate-promoted C―H carboxylation. Nature 2016, 531, 215–219.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, W.; Zhu, Y. L.; Niu, S. S.; Li, Y. W. A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts. Catal. A: Chem. 2011, 335, 71–78.

    Article  CAS  Google Scholar 

  31. Reddy, P. R.; Subrahmanyam, M. J. Kulkarni, S. Vapour phase acylation of furan and pyrrole over zeolites. Catal. Lett. 1998, 54, 95–100.

    Article  CAS  Google Scholar 

  32. Richard, F.; Carreyre, H.; Perot, G. J. Zeolite-catalyzed acylation of heterocyclic compounds: acylation of benzofuran and 2-methylbenzofuran in a fixed bed reactor. Catalysts 1996, 159, 427–434.

    CAS  Google Scholar 

  33. Vaitheeswaran, S.; Green, S. K.; Dauenhauer, P.; Auerbach, S. M. On the Way to biofuels from furan: discriminating diels–alder and ring-opening mechanisms. ACS Catal. 2013, 3, 2012–2019.

    Article  CAS  Google Scholar 

  34. Trushkov, I. V.; Nevolina, T. A.; Shcherbinin, V. A.; Sorotskaya, L. N.; Butin, A. V. Furan ring opening-pyrrole ring closure. A simple route to 1,2,3,4-tetrahydropyrrolo [1,2-a]pyrazin-3-ones.Tetrahedron Lett. 2013, 54, 3974–3976.

    CAS  Google Scholar 

  35. Uchiyama, M.; Katoh, N.; Mimura, R.; Yokota, N.; Shimogaichi, Y.; Shimazaki, M.; Ohta, A. ChemInform abstract: highly enantioselective reduction of symmetrical diacetylaromatics with Baker’s Yeast. Tetrahedron: asymmetry 1997, 8, 3467–3474.

    Article  CAS  Google Scholar 

  36. Fuson, R. C.; Bull, B. A. The Haloform Reaction. Chem. Rev. 1934, 15, 275–309.

    Article  CAS  Google Scholar 

  37. Tsanaktsis, V.; Papageorgiou, G. Z.; Bikiaris, D. N. A facile method to synthesize high-molecular-weight biobased polyesters from 2,5-furandicarboxylic acid and long-chain diols. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2617–2632.

    Article  CAS  Google Scholar 

  38. Moore, J. A.; Kelly, J. E. Polyesters derived from furan and tetrahydrofuran nuclei. Macromolecules 1978, 11, 568–573.

    Article  CAS  Google Scholar 

  39. Yi, G.; Teong, S. P.; Li, X.; Zhang, Y. Purification of eiomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid. ChemSusChem 2014, 7, 2131–2135.

    Article  CAS  PubMed  Google Scholar 

  40. Vigier, K. D. O.; Benguerba, A.; Barrault, J.; Jerome, F. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem. 2012, 14, 285–289.

    Article  CAS  Google Scholar 

  41. Gallo, J. M. R.; Alonso, D. M.; Mellmer, M. A.; Dumesic, J. A. Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem. 2013, 15, 85–90.

    Article  CAS  Google Scholar 

  42. Papageorgiou, G. Z.; Papageorgiou, D. G.; Terzopoulou, Z.; Bikiaris, D. N. Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229.

    Article  CAS  Google Scholar 

  43. Gomes, M.; Gandini, A.; Silvestre, A. J. D.; Reis, B. Synthesis and Characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3759–3768.

    Article  CAS  Google Scholar 

  44. Thiyagarajan, S.; Vogelzang, W.; Knoop, R. J.; Frissen, A. E.; Haveren, J. V.; Es, D. S. V. Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties. Green Chem. 2014, 16, 1957–1966.

    Article  CAS  Google Scholar 

  45. Wang, J. G.; Liu, X. Q.; Zhang, Y. J.; Liu, F.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1–8.

    Article  CAS  Google Scholar 

  46. Wang, J. G.; Liu, X. Q.; Zhu, J.; Jiang, Y. H. Copolyesters based on 2,5-furandicarboxylic acid (FDCA): effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties Polymers 2017, 9, 305–320.

    Google Scholar 

  47. Knoop, R.; Vogelzang, J. W.; Haveren, J. V.; Es, D. S. V. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4191–4199.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51373194 and 51503217) and National Key Technology Support Program (No. 2015BAD15B08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qing Liu or Jin Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JG., Liu, XQ. & Zhu, J. From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate). Chin J Polym Sci 36, 720–727 (2018). https://doi.org/10.1007/s10118-018-2092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2092-0

Keywords

Navigation