Skip to main content

Advertisement

Log in

Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Smart materials with a combination of tough solid-like properties, fast self-healing and optical responsiveness are of interests for the development of new soft machines and wearable electronics. In this work, tough physically cross-linked elastomers that show high mechanical strength, intriguing temperature-adaptable self-healing and fluorochromic response properties are designed using aluminum (Al) and fluorescent europium (Eu) ions as cross-linkers. The ionic Al-COOH binding is incorporated to construct the strong polymer network which mainly contributes to the mechanical robustness of the elastomer consisting of two interpenetrated networks. The Eu-iminodiacetate (IDA) coordination is mainly used to build the weaker but more dynamic network which dominate the elasticity, self-healing and luminescence of the elastomer. Moderate Eu3+ and Al3+ contents give these supramolecular elastomers high toughness. The temperature-sensitive Eu-IDA coordination enables tunable self-healing rate and efficiency along with fast Eu-centered “ON/OFF” switchable red emission. The mechanical, self-healing and luminescence properties of these elastomers can be adjusted by tuning the ratio of the two types of metal ions. This elastomer is potentially applicable for biosensors, wearable optoelectronics and anticounterfeiting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Sel—healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128–16131.

    CAS  PubMed  Google Scholar 

  2. Rao, Y. L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y. C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027.

    CAS  PubMed  Google Scholar 

  3. Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210–1216.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi, L.; Wang, F.; Zhu, W.; Xu, Z.; Fuchs, S.; Hilborn, J.; Zhu, L.; Ma, Q.; Wang, Y.; Weng, X. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 1700591.

    Google Scholar 

  5. Tang, Z.; Huang, J.; Guo, B.; Zhang, L.; Liu, F. Biomspirdd engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules 2016, 49, 1781–1789.

    CAS  Google Scholar 

  6. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toggenrngg elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ibarra, L.; Alzorriz, M. Ionic elastomers based on carboxylated nitrile rubber (XNBR) and zinc peroxide: influence of carboxylic group content on properties. J. Appl. Polym. Sci. 2002, 84, 605–615.

    CAS  Google Scholar 

  8. Takahashi, A.; Rho, Y.; Higashihara, T.; Ahn, B.; Ree, M.; Ueda, M. Preparation of nanoporous poly(3-hexylthiophene) films based on a template system of block copolymers via ionic interaction. Macromolecules 2010, 43, 4843–4852.

    CAS  Google Scholar 

  9. Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8, 17728–17737.

    CAS  PubMed  Google Scholar 

  10. Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7, 20623–20630.

    CAS  PubMed  Google Scholar 

  11. Hemmer, J. R.; Mason, B. P.; Casalini, R. Dynamics of novel polybutadiene ionomers. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1074–1079.

    CAS  Google Scholar 

  12. Lu, T.; Finkenauer, L.; Wissman, J.; Majidi, C. Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 2014, 24, 3351–3356.

    CAS  Google Scholar 

  13. Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053.

    PubMed  PubMed Central  Google Scholar 

  14. Markvicka, E. J.; Bartlett, M. D.; Huang, X.; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618.

    CAS  PubMed  Google Scholar 

  15. Lu, N.; Kim, D. H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 2014, 1, 53–62.

    Google Scholar 

  16. Bartlett, M. D.; Markvicka, E. J.; Majidi, C. Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Adv. Funct. Mater. 2016, 26, 8496–8504.

    CAS  Google Scholar 

  17. Lu, Y.; Biswas, M. C.; Guo, Z.; Jeon, J. W.; Wujcik, E. K. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 2019, 123, 167–177.

    CAS  PubMed  Google Scholar 

  18. Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye, G.; Song, Z.; Yu, T.; Tan, Q.; Zhang, Y.; Chen, T.; He, C.; Jin, L.; Liu, N. Dynamic Ag-N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 1486–1494.

    CAS  PubMed  Google Scholar 

  20. Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164.

    PubMed  PubMed Central  Google Scholar 

  21. Hong, G.; Zhang, H.; Lin, Y.; Chen, Y.; Xu, Y.; Weng, W.; Xia, H. Mechanoresponsive healable metallosupramolecular polymers. Macromolecules 2013, 46, 8649–8656.

    CAS  Google Scholar 

  22. Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B. H.; Jia, X.; Bao, Z. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, 30, 1801435.

    Google Scholar 

  23. Lei, Y.; Huang, W.; Huang, Q.; Zhang, A. A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J. Chem. 2019, 43, 261–268.

    CAS  Google Scholar 

  24. Wu, J.; Niu, W.; Zhang, S.; Wu, S.; Ma, W.; Tang, B. Polyacrylic acid-based coordination supramolecular elastomer with high strength, excellent fatigue-resistance, and self-recovery properties. Macromol. Chem. Phys. 2019, 220, 1800571.

    Google Scholar 

  25. Gai, G.; Liu, L.; Li, C.H.; Bose, R. K.; Li, D.; Guo, N.; Kong, B. A tough metal-coordinated elastomer: a fatigue-resistant, notch-insensitive material with an excellent self-healing capacity. ChemPlusChem 2019, 84, 432–440.

    CAS  PubMed  Google Scholar 

  26. Mozhdehi, D.; Neal, J. A.; Grindy, S. C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z. Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 2016, 49, 6310–6321.

    CAS  Google Scholar 

  27. Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 2016, 49, 9637–9646.

    CAS  Google Scholar 

  28. Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 2011, 108, 2651–2655.

    CAS  PubMed  Google Scholar 

  29. Lai, J. C.; Li, L.; Wang, D.P.; Zhang, M. H.; Mo, S. R.; Wang, X.; Zeng, K. Y.; Li, C. H.; Jiang, Q.; You, X. Z.; Zuo, J. L. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725.

    PubMed  PubMed Central  Google Scholar 

  30. Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5, 28896–28900.

    CAS  Google Scholar 

  31. Jia, X. Y.; Mei, J. F.; Lai, J. C.; Li, C.H.; You, X. Z. A self-healing PDMS polymer with solvatochromic properties. Chem. Commun. 2015, 51, 8928–8930.

    CAS  Google Scholar 

  32. Zhang, Q.; Zhu, X.; Li, C.H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking. Macromolecules 2019, 52, 660–668.

    CAS  Google Scholar 

  33. Balkenende, D. W. R.; Coulibaly, S.; Balog, S.; Simon, Y. C.; Fiore, G. L.; Weder, C. Mechanochemistry with metallosupramolecular polymers. J. Am. Chem. Soc. 2014, 136, 10493–10498.

    CAS  PubMed  Google Scholar 

  34. Zou, F.; Chen, H.; Chen, S.; Zhuo, H. Development of supramolecular shape-memory polyurethanes based on Cu(II)-pyridine coordination interactions. J. Mater. Sci. 2019, 54, 5136–5148.

    CAS  Google Scholar 

  35. Lin, Q.; Sun, B.; Yang, Q. P.; Fu, Y. P.; Zhu, X.; Zhang, Y. M.; Wei, T. B. A novel strategy for the design of smart supramolecular gels: controlling stimuli-response properties through competitive coordination of two different metal ions. Chem. Commun. 2014, 50, 10669–10671.

    CAS  Google Scholar 

  36. Beck, J. B.; Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 2003, 125, 13922–13923.

    CAS  PubMed  Google Scholar 

  37. Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J. Am. Chem. Soc. 2015, 137, 11590–11593.

    CAS  PubMed  Google Scholar 

  38. Lin, Q.; Lu, T. T.; Zhu, X.; Wei, T. B.; Li, H.; Zhang, Y. M. Rationally introduce multi-competitive binding interactions in supramolecular gels: a simple and efficient approach to develop multi-analyte sensor array. Chem. Sci. 2016, 7, 5341–5346.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weng, W.; Beck, J. B.; Jamieson, A. M.; Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 2006, 128, 11663–11672.

    CAS  PubMed  Google Scholar 

  40. Kumpfer, J. R.; Jin, J.; Rowan, S. J. Stimuli-responsive europium-containing metallo-supramolecular polymers. J. Mater. Chem. 2010, 20, 145–151.

    CAS  Google Scholar 

  41. Shunmugam, R.; Tew, G. N. Polymers that contain ligated metals in their side chain: building a foundation for functional materials in opto-electronic applications with an emphasis on lanthanide ions. Macromol. Rapid Commun. 2008, 29, 1355–1362.

    CAS  Google Scholar 

  42. Wang, X. H.; Song, F.; Xue, J.; Qian, D.; Wang, X. L.; Wang, Y. Z. Mechanically strong and tough hydrogels with excellent antifatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. Polymer 2018, 153, 637–642.

    CAS  Google Scholar 

  43. Zhao, Y.; Beck, J. B.; Rowan, S. J.; Jamieson, A. M. Rheological behavior of shear-responsive metallo-supramolecular gels. Macromolecules 2004, 37, 3529–3531.

    CAS  Google Scholar 

  44. Grindy, S. C.; Holten-Andersen, N. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light. Soft Matter 2017, 13, 4057–4065.

    CAS  PubMed  Google Scholar 

  45. Yang, B.; Zhang, H.; Peng, H.; Xu, Y.; Wu, B.; Weng, W.; Li, L. Self-healing metallo-supramolecular polymers from a ligand macromolecule synthesized via copper-catalyzed azide-alkyne cycloaddition and thiol-ene double “click” reactions. Polym. Chem. 2014, 5, 1945–1953.

    CAS  Google Scholar 

  46. Li, Y. X.; Li, S. J.; Yan, P. F.; Wang, X. Y.; Yao, X.; An, G. H.; Li, G. M. Luminescence-colour-changing sensing of Mn2+ and Ag+ tons based on a white-light-emitting lanthanide coordination polymer. Chem. Commun. 2017, 53, 5067–5070.

    CAS  Google Scholar 

  47. Ramya, A.; Varughese, S.; Reddy, M. Tunable white-light emission from mixed lanthanide (Eu3+, Gd3+, Tb3+) coordination polymers derived from 4-(dipyridin-2-yl) aminobenzoate. Dalton Trans. 2014, 43, 10940–10946.

    CAS  PubMed  Google Scholar 

  48. Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

    CAS  PubMed  Google Scholar 

  49. Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, M. K.; Park, I.; Kim, D. C.; Joh, E.; Park, O. K.; Kim, J.; Kim, M.; Choi, C.; Yang, J.; Cho, K. W. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 2015, 25, 7109–7118.

    CAS  Google Scholar 

  52. Hu, H.; Tang, J.; Zhong, H.; Xi, Z.; Chen, C.; Chen, Q. Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Sci. Rep. 2013, 3, 1484.

    PubMed  PubMed Central  Google Scholar 

  53. Han, S.; Bae, H. J.; Kim, J.; Shin, S.; Choi, S. E.; Lee, S. H.; Kwon, S.; Park, W. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 2012, 24, 5924–5929.

    CAS  PubMed  Google Scholar 

  54. Thanneeru, S.; Duay, S. S.; Jin, L.; Fu, Y.; Angeles-Boza, A. M.; He, J. Single chain polymeric nanoparticles to promote selective hydroxylation reactions of phenol catalyzed by copper. ACS Macro Lett. 2017, 6, 652–656.

    CAS  Google Scholar 

  55. Zhou, X.; Wang, L.; Wei, Z.; Weng, G.; He, J. An adaptable tough elastomer with moisture-triggered switchable mechanical and fluorescent properties. Adv. Funct. Mater. 2019, 29, 1903543.

    Google Scholar 

  56. Weng, G.; Thanneeru, S.; He, J. Dynamic coordination of eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 2018, 30, 1706526.

    Google Scholar 

  57. Weng, G.; Yao, H.; Chang, A.; Fu, K.; Liu, Y.; Chen, Z. Crack growth mechanism of natural rubber under fatigue loading studied by a real-time crack tip morphology monitoring method. RSC Adv. 2014, 4, 43942–43950.

    CAS  Google Scholar 

  58. Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.

    CAS  PubMed  Google Scholar 

  59. Binnemans, K. Interpretation of europium(III) spectra. Coordin. Chem. Rev. 2015, 295, 1–45.

    CAS  Google Scholar 

  60. Gent, A. N.; Kawahara, S.; Zhao, J. Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene. Rubber Chem. Technol. 1998, 71, 668–678.

    CAS  Google Scholar 

  61. Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F. L.; Bao, X.; You, Z. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, 1901402.

    Google Scholar 

  62. Sandmann, B.; Happ, B.; Kupfer, S.; Schacher, F. H.; Hager, M. D.; Schubert, U. S. The self-healing potential of triazole-pyridine-based metallopolymers. Macromol. Rapid Commun. 2015, 36, 604–609.

    CAS  PubMed  Google Scholar 

  63. Wang, Z.; Xie, C.; Yu, C.; Fei, G.; Wang, Z.; Xia, H. A facile strategy for self-healing polyurethanes containing multiple metal-ligand bonds. Macromol. Rapid Commun. 2018, 39, 1700678.

    Google Scholar 

  64. Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5, 25660–25671.

    CAS  Google Scholar 

Download references

Acknowledgments

G.W. is grateful for the financial support of Natural Science Foundation of Zhejiang Province (No. LY19E030002), Ningbo Municipal Science and Technology Bureau (No. 2019A610133) and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng-Sheng Weng.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, QY., Dai, CH., Chen, H. et al. Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties. Chin J Polym Sci 39, 554–565 (2021). https://doi.org/10.1007/s10118-021-2517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2517-z

Keywords

Navigation