Skip to main content
Log in

“Solid-Liquid” Vitrimers Based on Dynamic Boronic Ester Networks

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The “solid-liquid” behavior of vitrimers have not been systematically investigated. Herein, a series of “solid-liquid” vitrimers bearing varying contents of dynamic boronic ester bonds were synthesized via thiol-ene click reactions. These vitrimers allow for flexibile modulation of their network structures and thus show a range of intriguing properties including high stretchability, flexible transition from elasticity to plasticity, strong strain rate dependence, and solid-liquid performance. The dynamic association rate of boronic ester bonds within these vitrimers could be apparently accelerated via increasing the content of boronic ester, which could be used to shape-program the flat vitrimer films into various complex 3D structures just with external force. Materials with such versatile dynamic behavior may open up a range of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

    Article  CAS  Google Scholar 

  2. Wu, T.; Chen, B. Synthesis of multiwalled carbon nanotube-reinforced polyborosiloxane nanocomposites with mechanically adaptive and self-healing capabilities for flexible conductors. ACS Appl. Mater. Interfaces 2016, 8, 24071–24078.

    Article  CAS  Google Scholar 

  3. Yuan, F.; Wang, S.; Zhang, S.; Wang, Y.; Xuan, S.; Gong, X. A flexible viscoelastic coupling cable with self-adapted electrical properties and anti-impact performance toward shapeable electronic devices. J. Mater. Chem. C 2019, 7, 8412–8422.

    Article  CAS  Google Scholar 

  4. Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Colema, J. N. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260.

    Article  CAS  Google Scholar 

  5. Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D.; Liu, Y.; Liu, C.; Hsu, P. C.; Bao, Z.; Cui, Y. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815–4820.

    Article  CAS  Google Scholar 

  6. D’Elia, E.; Barg, S.; Ni, N.; Rocha, V. G.; Saiz, E. Self-healing graphene-based composites with sensing capabilities. Adv. Mater. 2015, 27, 4788–4794.

    Article  Google Scholar 

  7. Wu, Q.; Xiong, H.; Peng, Y.; Yang, Y.; Kang, J.; Huang, G.; Ren, X.; Wu, J. Highly stretchable and self-healing “solid-liquid” elastomer with strain-rate sensing capability. ACS Appl. Mater. Interfaces 2019, 11, 19534–19540.

    Article  CAS  Google Scholar 

  8. Wu, T.; Gray, E.; Chen, B. A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors. J. Mater. Chem. C 2018, 6, 6200–6207.

    Article  CAS  Google Scholar 

  9. Zhou, X.; Zhang, X.; Zhao, H.; Krishnan, B. P.; Cui, J. Self-healable and recyclable tactile force sensors with post-tunable sensitivity. Adv. Funct. Mater. 2020, 30, 2003533.

    Article  CAS  Google Scholar 

  10. Liu, Z.; Picken, S. J.; Besseling, N. A. M. Polyborosiloxanes (PBSs), synthetic kinetics, and characterization. Macromolecules 2014, 4, 4531–4537.

    Article  Google Scholar 

  11. Tang, M.; Wang, W.; Xu, D.; Wang, Z. Synthesis of structure-controlled polyborosiloxanes and investigation on their viscoelastic response to molecular mass of polydimethylsiloxane triggered by both chemical and physical interactions. Ind. Eng. Chem. Res. 2016, 55, 12582–12589.

    Article  CAS  Google Scholar 

  12. Qu, P.; Lv, C.; Qi, Y.; Bai, L.; Zheng, J. A highly stretchable, self-healing elastomer with rate sensing capability based on a dynamic dual network. ACS Appl. Mater. Interfaces 2021, 13, 9043–9052.

    Article  CAS  Google Scholar 

  13. Zhang, G.; Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties. Adv. Funct. Mater. 2016, 26, 931–937.

    Article  CAS  Google Scholar 

  14. Zhang, H.; Wu, Y.; Yang, J.; Wang, D.; Yu, P.; Lai, C. T.; Shi, A. C.; Wang, J.; Cui, S.; Xiang, J.; Zhao, N.; Xu, J. Superstretchable dynamic polymer networks. Adv. Mater. 2019, 31, 1904029.

    Article  CAS  Google Scholar 

  15. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38.

    Article  CAS  Google Scholar 

  16. Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 2017, 29, 1606100.

    Article  Google Scholar 

  17. Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 2019, 141, 16181–16196.

    Article  CAS  Google Scholar 

  18. Podgorski, M.; Fairbanks, B. D.; Kirkpatrick, B. E.; McBride, M.; Martinez, A.; Dobson, A.; Bongiardina, N. J.; Bowman, C. N. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs). Adv. Mater. 2020, 32, 1906876.

    Article  CAS  Google Scholar 

  19. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  Google Scholar 

  20. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41.

    Article  CAS  Google Scholar 

  21. Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138, 2118–2121.

    Article  CAS  Google Scholar 

  22. Lyon, G. B.; Cox, L. M.; Goodrich, J. T.; Baranek, A. D.; Ding, Y.; Bowman, C. N. Remoldable thiol-ene vitrimers for photopatterning and nanoimprint lithography. Macromolecules 2016, 49, 8905–8913.

    Article  CAS  Google Scholar 

  23. Wang, S.; Yang, L.; Wang, H.; Xue, L.; Chen, J.; Cui, J. Nonequilibrium transesterification for programming a material’s stiffening. ACS Appl. Polym. Mater. 2019, 1, 3227–3232.

    Article  CAS  Google Scholar 

  24. Lu, Y. X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427.

    Article  CAS  Google Scholar 

  25. Zheng, P.; McCarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 2012, 134, 2024–2027.

    Article  CAS  Google Scholar 

  26. Tretbar, C. A.; Neal, J. A.; Guan, Z. Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc. 2019, 141, 16595–16599.

    Article  CAS  Google Scholar 

  27. Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457.

    Article  CAS  Google Scholar 

  28. Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65.

    Article  Google Scholar 

  29. Ogden, W. A.; Guan, Z. Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc. 2018, 140, 6217–6220.

    Article  CAS  Google Scholar 

  30. Bao, C.; Jiang, Y. J.; Zhang, H.; Lu, X.; Sun, J. Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines. Adv. Funct. Mater. 2018, 28, 1800560.

    Article  Google Scholar 

  31. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  CAS  Google Scholar 

  32. Chen, Y.; Tang, Z.; Zhang, X.; Liu, Y.; Wu, S.; Guo, B. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds. ACS Appl. Mater. Interfaces 2018, 10, 24224–24231.

    Article  CAS  Google Scholar 

  33. Meng, F.; Saed, M. O.; Terentjev, E. M. Elasticity and relaxation in full and partial vitrimer networks. Macromolecules 2019, 52, 7423–7429.

    Article  CAS  Google Scholar 

  34. Saed, M. O.; Gablier, A.; Terentejv, E. M. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange. Adv. Funct. Mater. 2019, 31, 1906458.

    Google Scholar 

  35. Song, K.; Ye, W.; Gao, X.; Fang, H.; Zhang, Y.; Zhang, Q.; Li, X.; Yang, S.; Wei, H.; Ding, Y. Synergy between dynamic covalent boronic ester and boron-nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Mater. Horiz. 2021, 8, 216–223. https://doi.org/10.1007/s10118-021-2592-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51973023) and Sichuan Science and Technology Program (No. 2021JDRC0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Xi Cui.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xue, LL., Zhou, XZ. et al. “Solid-Liquid” Vitrimers Based on Dynamic Boronic Ester Networks. Chin J Polym Sci 39, 1292–1298 (2021). https://doi.org/10.1007/s10118-021-2592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2592-1

Keywords

Navigation