Skip to main content
Log in

Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice: changes in gene expression and associated regulatory networks resulting from serine deficiency

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

d-3-Phosphoglycerate dehydrogenase (Phgdh) is a necessary enzyme for de novo l-serine biosynthesis. Mutations in the human PHGDH cause serine deficiency disorders characterized by severe neurological symptoms including congenital microcephaly and psychomotor retardation. We showed previously that targeted disruption of Phgdh in mice causes overall growth retardation with severe brain microcephaly and leads to embryonic lethality. Here, amino acid analysis of Phgdh knockout (KO) mouse embryos demonstrates that free serine and glycine concentrations are decreased markedly in head samples, reflecting the metabolic changes of serine deficiency found in human patients. To understand the pathogenesis of serine deficiency disorders at the molecular level, we have exploited this animal model to identify altered gene expression patterns using a microarray technology. Comparative microarray analysis of the Phgdh KO and wild-type head at gestational day 13.5 revealed an upregulation of genes involved in transfer RNA aminoacylation, amino acid metabolism, amino acid transport, transcriptional regulation, and translation, and a downregulation of genes involved in transcription in neuronal progenitors and muscle and cartilage development. A computational network analysis software was used to construct transcriptional regulatory networks operative in the Phgdh KO embryos in vivo. These observations suggest that Phgdh inactivation alters transcriptional programs in several regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    Article  PubMed  CAS  Google Scholar 

  • Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA, Wek RC (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279:36553–36561

    Article  PubMed  CAS  Google Scholar 

  • Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P (2004) Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279:5288–5297

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991) Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49:421–426

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  PubMed  CAS  Google Scholar 

  • Cho HM, Jun DY, Bae MA, Ahn JD, Kim YH (2000) Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene. Gene 245:193–201

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264

    Article  PubMed  CAS  Google Scholar 

  • de Koning TJ (2006) Treatment with amino acids in serine deficiency disorders. J Inherit Metab Dis 29:347–351

    Article  PubMed  CAS  Google Scholar 

  • de Koning TJ, Duran M, Van Maldergem L, Pineda M, Dorland L, Gooskens R, Jaeken J, Poll-The BT (2002) Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids. J Inherit Metab Dis 25:119–125

    Article  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251

    Article  PubMed  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Fu TF, Rife JP, Schirch V (2001) The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by (13)C NMR. Arch Biochem Biophys 393:42–50

    Article  PubMed  CAS  Google Scholar 

  • Furst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    Article  PubMed  CAS  Google Scholar 

  • Furuya S (2008) An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac J Clin Nutr 17 (S1) (in press)

  • Furuya S, Watanabe M (2003) Novel neuroglial and glioglial relationships mediated by l-serine metabolism. Arch Histol Cytol 66:109–121

    Article  PubMed  CAS  Google Scholar 

  • Furuya S, Tabata T, Mitoma J, Yamada K, Yamasaki M, Makino A, Yamamoto T, Watanabe M, Kano M, Hirabayashi Y (2000) l-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 97:11528–11533

    Article  PubMed  CAS  Google Scholar 

  • Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, Cavener DR, McGrath BC, Rudell JB, Koehnle TJ, Gietzen DW (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307:1776–1778

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Hart CE, Race V, Achouri Y, Wiame E, Sharrard M, Olpin SE, Watkinson J, Bonham JR, Jaeken J, Matthijs G, Van Schaftingen E (2007) Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet 80:931–937

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  PubMed  CAS  Google Scholar 

  • Hosack DA, Dennis G Jr., Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed  Google Scholar 

  • Ichihara A, Greenberg DM (1955) Pathway of serine formation from carbohydrate in rat liver. Proc Natl Acad Sci U S A 41:605–609

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, Detheux M, Van Maldergem L, Foulon M, Carchon H, Van Schaftingen E (1996) 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch Dis Child 74:542–545

    PubMed  CAS  Google Scholar 

  • Jaeken J, Detheux M, Fryns JP, Collet JF, Alliet P, Van Schaftingen E (1997) Phosphoserine phosphatase deficiency in a patient with Williams syndrome. J Med Genet 34:594–596

    Article  PubMed  CAS  Google Scholar 

  • Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Johnston JG, van der Kooy D (1989) Protooncogene expression identifies a transient columnar organization of the forebrain within the late embryonic ventricular zone. Proc Natl Acad Sci U S A 86:1066–1070

    Article  PubMed  CAS  Google Scholar 

  • Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163:767–775

    Article  PubMed  CAS  Google Scholar 

  • Klomp LW, de Koning TJ, Malingre HE, van Beurden EA, Brink M, Opdam FL, Duran M, Jaeken J, Pineda M, Van Maldergem L, Poll-The BT, van den Berg IE, Berger R (2000) Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency-a neurometabolic disorder associated with reduced l-serine biosynthesis. Am J Hum Genet 67:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B (2003) A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A 100:8164–8169

    Article  PubMed  CAS  Google Scholar 

  • Luscher B, Eisenman RN (1988) c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 8:2504–2512

    PubMed  CAS  Google Scholar 

  • Lyons GE, Ontell M, Cox R, Sassoon D, Buckingham M (1990) The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol 111:1465–1476

    Article  PubMed  CAS  Google Scholar 

  • Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1:273–277

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  PubMed  CAS  Google Scholar 

  • Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci U S A 99:6274–6279

    Article  PubMed  CAS  Google Scholar 

  • Mitoma J, Furuya S, Hirabayashi Y (1998a) A novel metabolic communication between neurons and astrocytes: non-essential amino acid l-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci Res 30:195–199

    Article  PubMed  CAS  Google Scholar 

  • Mitoma J, Kasama T, Furuya S, Hirabayashi Y (1998b) Occurrence of an unusual phospholipid, phosphatidyl-l-threonine, in cultured hippocampal neurons. Exogenous l-serine is required for the synthesis of neuronal phosphatidyl-l-serine and sphingolipids. J Biol Chem 273:19363–19366

    Article  PubMed  CAS  Google Scholar 

  • Moberg KH, Logan TJ, Tyndall WA, Hall DJ (1992) Three distinct elements within the murine c-myc promoter are required for transcription. Oncogene 7:411–421

    PubMed  CAS  Google Scholar 

  • Nakano I, Dougherty JD, Kim K, Klement I, Geschwind DH, Kornblum HI (2007) Phosphoserine phosphatase is expressed in the neural stem cell niche and regulates neural stem and progenitor cell proliferation. Stem Cells 25:1975–1984

    Article  PubMed  CAS  Google Scholar 

  • Nikiforov MA, Chandriani S, O’Connell B, Petrenko O, Kotenko I, Beavis A, Sedivy JM, Cole MD (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22:5793–5800

    Article  PubMed  CAS  Google Scholar 

  • Pind S, Slominski E, Mauthe J, Pearlman K, Swoboda KJ, Wilkins JA, Sauder P, Natowicz MR (2002) V490M, a common mutation in 3-phosphoglycerate dehydrogenase deficiency, causes enzyme deficiency by decreasing the yield of mature enzyme. J Biol Chem 277:7136–7143

    Article  PubMed  CAS  Google Scholar 

  • Pohjanpelto P, Holtta E (1990) Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol 10:5814–5821

    PubMed  CAS  Google Scholar 

  • Remondini D, O’Connell B, Intrator N, Sedivy JM, Neretti N, Castellani GC, Cooper LN (2005) Targeting c-Myc-activated genes with a correlation method: detection of global changes in large gene expression network dynamics. Proc Natl Acad Sci U S A 102:6902–6906

    Article  PubMed  CAS  Google Scholar 

  • Saxe JP, Wu H, Kelly TK, Phelps ME, Sun YE, Kornblum HI, Huang J (2007) A phenotypic small-molecule screen identifies an orphan ligand–receptor pair that regulates neural stem cell differentiation. Chem Biol 14:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Albergine M, Ippolito DL, Beavo JA (2001) Downregulation of fasting-induced cAMP response element-mediated gene induction by leptin in neuropeptide Y neurons of the arcuate nucleus. J Neurosci 21:1238–1246

    PubMed  CAS  Google Scholar 

  • Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–24127

    Article  PubMed  CAS  Google Scholar 

  • Snell K (1984) Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul 22:325–400

    Article  PubMed  CAS  Google Scholar 

  • Suo S, Kimura Y, Van Tol HH (2006) Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci 26:10082–10090

    Article  PubMed  CAS  Google Scholar 

  • Takasaki C, Miura E, Watanabe M (2007) Segmental and complementary expression of l-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase and neutral amino acid transporter ASCT1 in the mouse kidney. Biomed Res 28:61–69

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  PubMed  CAS  Google Scholar 

  • Wisdom R, Lee W (1991) The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev 5:232–243

    Article  PubMed  CAS  Google Scholar 

  • Wu SX, Goebbels S, Nakamura K, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N (2005) Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci U S A 102:17172–17177

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21:7691–7704

    PubMed  CAS  Google Scholar 

  • Yoshida K, Furuya S, Osuka S, Mitoma J, Shinoda Y, Watanabe M, Azuma N, Tanaka H, Hashikawa T, Itohara S, Hirabayashi Y (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279:3573–3577

    Article  PubMed  CAS  Google Scholar 

  • Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103:17834–17839

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR (2002) The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22:6681–6688

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102:4459–4464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank staff members in the Division of Research Resources Center of RIKEN Brain Science Institute for technical assistance. This work was supported by Grants-in-Aid for Scientific Research Areas (C), no. 14580756 and (B) no. 18300125 to S.F. from the Japanese Ministry of Education, Culture, Sport, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Furuya.

Additional information

Furuya and Yoshida contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material:

Supplementary Tables

(PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, S., Yoshida, K., Kawakami, Y. et al. Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice: changes in gene expression and associated regulatory networks resulting from serine deficiency. Funct Integr Genomics 8, 235–249 (2008). https://doi.org/10.1007/s10142-007-0072-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0072-5

Keywords

Navigation