Skip to main content

Advertisement

Log in

Applications of computational algorithm tools to identify functional SNPs

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations in humans. Understanding the functions of SNPs can greatly help to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. The method to identify functional SNPs from a pool, containing both functional and neutral SNPs is challenging by experimental protocols. To explore possible relationships between genetic mutation and phenotypic variation, different computational algorithm tools like Sorting Intolerant from Tolerant, Polymorphism Phenotyping, UTRscan, FASTSNP, and PupaSuite were used for prioritization of high-risk SNPs in coding region (exonic nonsynonymous SNPs) and noncoding regions (intronic and exonic 5’ and 3’-untranslated region (UTR) SNPs). In this work, we have analyzed the SNPs that can alter the expression and function of transcriptional factor TP53 as a pipeline and for providing a guide to experimental work. We identified the possible mutations and proposed modeled structure for the mutant proteins and compared them with the native protein. These nsSNPs play a critical role in cancer association studies aiming to explain the disparity in cancer treatment responses as well as to improve the effectiveness of the cancer treatments. Our results endorse the study with in vivo experimental protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becky MP, Anne EW (2005) The implications of structured 5’ untranslated regions on translation and disease. Cell Dev Biol 16:39–47

    Article  Google Scholar 

  • Brian Sprague L, Dietz AT, Closas MG, Newcomb AP, Ernstoff LT, Hampton JM, Chanock JS, Haines LJ, Egan MK (2007) Genetic variation in TP53 and risk of breast cancer in a population-based case-control study. Carcinogenesis 28(8):680–1686

    Article  Google Scholar 

  • Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238

    Article  PubMed  CAS  Google Scholar 

  • Cavallo A, Martin AC (2005) Mapping SNPs to protein sequence and structure data. Bioinformatics 8:1443–1450

    Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Article  PubMed  Google Scholar 

  • Conde L, Vaquerizas MJ, Santoyo J, Al-Shahrour F, Ruiz-Llorente S, Robledo M, Dopazo J (2004) PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res 32:W242–W248

    Article  PubMed  CAS  Google Scholar 

  • Conde L, Vaquerizas JM, Ferrer-Costa C, de la Cruz X, Orozco M, Dopazo J (2005) PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes. Nucleic Acids Res 33:W501–W505

    Article  PubMed  CAS  Google Scholar 

  • Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621–W625

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci 101:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Deventer VS (2000) Cytokine and cytokine receptor polymorphisms in infectious disease. Intensive Care Med 26:S98–S102

    Article  PubMed  Google Scholar 

  • Goto Y, Yue L, Yokoi A, Nishimura R, Uehara T, Koizumi S, Saikawa Y (2001) A novel single-nucleotide polymorphism in the 3-untranslated region of the human dihydrofolate reductase gene with enhanced expression. Clin Cancer Res 7:1952–1956

    PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Horvath MM, Wang X, Resnick MA, Bel DA (2007) Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLoS Genet 3(7):e127

    Article  PubMed  Google Scholar 

  • Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, Thomas N, Strachan T, Read AP, Cooper DN (2000) Human gene mutation database—a biomedical information and research resource. Hum Mutat 15:45–51

    Article  PubMed  CAS  Google Scholar 

  • Kwock PY (2003) Single nucleotide polymorphisms methods and protocols (Methods in molecular biology), vol. 212. Humana Press, Totowa

    Google Scholar 

  • Lindahl E, Azuara C, Koehl P, Delarue M (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34:W52–W56

    Article  PubMed  CAS  Google Scholar 

  • Nowak R (1994) Mining treasures from ‘junk DNA’. Science 263:608–610

    Article  PubMed  CAS  Google Scholar 

  • Pauline Ng C, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  Google Scholar 

  • Pauline Ng C, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucl Acids Res 31:3812–3814

    Article  PubMed  Google Scholar 

  • Pesole G, Liuni S (1999) Internet resources for the functional analysis of 5’ and 3’ untranslated regions of eukaryotic mRNA. TIG 15:378

    PubMed  CAS  Google Scholar 

  • Pesole G, Liuni S, Grillo G, Licciulli F, Mignone F, Gissi C, Saccone C (2002) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5’ and 3’ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 30:335–340

    Article  PubMed  CAS  Google Scholar 

  • Petitjean E, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629

    Article  Google Scholar 

  • Ramensky V, Pork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F (2006) SNPeffect v2.0: a new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics 22(17):2183–2185

    Article  PubMed  CAS  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29:308–311

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N (1994) mRNA translation: influence of the 59 and 39 untranslated regions. Curr Opin Genet Dev 4:310–315

    Article  PubMed  CAS  Google Scholar 

  • Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, Béroud C (2006) Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12:62–69

    Article  PubMed  CAS  Google Scholar 

  • Strachan T, Read AP (1999) Human molecular genetics, 2nd edn. Bios Scientific, Oxford Ch. 18 Cancer Genet

    Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Chiou J, Tseng W, Liu C, Liu C, Lin Y, Wang H, Yao A, Chen Y, Hsu C (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the management of Vellore Institute of Technology for providing the facilities to carry out this work. All the authors thank the Editor-in-Chief Prof. Rudi Appels for his invaluable suggestions during the preparation of this compact review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sethumadhavan Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George Priya Doss, C., Sudandiradoss, C., Rajasekaran, R. et al. Applications of computational algorithm tools to identify functional SNPs. Funct Integr Genomics 8, 309–316 (2008). https://doi.org/10.1007/s10142-008-0086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0086-7

Keywords

Navigation