Skip to main content

Advertisement

Log in

The role of the gastrointestinal tract and microbiota on uremic toxins and chronic kidney disease development

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

It is well-established that uremic toxins are positively correlated with the risk of developing chronic kidney disease and cardiovascular disease. In addition, emerging data suggest that gut bacteria exert an influence over both the production of uremic toxins and the development of chronic kidney disease. As such, modifying the gut microbiota may have the potential as a treatment for chronic kidney disease. This is supported by data that suggest that rescuing microbiota dysbiosis may: reduce uremic toxin production; prevent toxins and pathogens from crossing the intestinal barrier; and, reduce gastrointestinal tract transit time allowing nutrients to reach the microbiota in the distal portion of the gastrointestinal tract. Despite emerging literature, the gut–kidney axis has yet to be fully explored. A special focus should be placed on examining clinically translatable strategies that might encourage improvements to the microbiome, thereby potentially reducing the risk of the development of chronic kidney disease. This review aims to present an overview of literature linking changes to the gastrointestinal tract with microbiota dysbiosis and the development and progression of chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

GIT:

Gastrointestinal tract

PCS:

p-Cresyl sulfate

IS:

Indoxyl sulfate

CHO:

Carbohydrate

References

  1. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80(9):2889–900. doi:10.1128/AEM.00342-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035S–45S.

    CAS  PubMed  Google Scholar 

  3. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. doi:10.1152/physrev.00045.2009.

    Article  CAS  PubMed  Google Scholar 

  4. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69. doi:10.1038/nri2710.

    Article  CAS  PubMed  Google Scholar 

  5. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107(44):18933–8. doi:10.1073/pnas.1007028107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phillips ML. Gut reaction: environmental effects on the human microbiota. Environ Health Perspect. 2009;117(5):A198–205.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res: Off J Italian Pharmacol Soc. 2013;69(1):52–60. doi:10.1016/j.phrs.2012.10.020.

    Article  CAS  Google Scholar 

  8. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48. doi:10.1016/j.cell.2006.02.017.

    Article  CAS  PubMed  Google Scholar 

  9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011;3(6):637–82. doi:10.3390/nu3060637.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. doi:10.1038/Nature11552.

    Article  CAS  PubMed  Google Scholar 

  12. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi:10.1126/science.1237439.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Proctor LM. The Human Microbiome Project in 2011 and beyond. Cell Host Microbe. 2011;10(4):287–91. doi:10.1016/j.chom.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  14. Langhendries JP. Early bacterial colonisation of the intestine: why it matters? Arch Pediatr: Organe Officiel de la Societe Francaise de Pediatrie. 2006;13(12):1526–34. doi:10.1016/j.arcped.2006.09.018.

    Article  Google Scholar 

  15. Turovskiy Y, Sutyak Noll K, Chikindas ML. The aetiology of bacterial vaginosis. J Appl Microbiol. 2011;110(5):1105–28. doi:10.1111/j.1365-2672.2011.04977.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7. doi:10.1038/nature09646.

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(12):691–701. doi:10.1038/nrgastro.2010.172.

    Article  PubMed  Google Scholar 

  18. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. doi:10.1128/CMR.00046-08 (Table of contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104(34):13780–5. doi:10.1073/pnas.0706625104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. doi:10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  21. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. doi:10.1371/journal.pone.0009085.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Evenepoel P, Meijers BK, Bammens BR, Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl. 2009;114:S12–9. doi:10.1038/ki.2009.402.

    Article  CAS  Google Scholar 

  23. Montiel-Castro AJ, Gonzalez-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013;7:70. doi:10.3389/fnint.2013.00070.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giannelli V, Di Gregorio V, Iebba V, Giusto M, Schippa S, Merli M, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol: WJG. 2014;20(45):16795–810. doi:10.3748/wjg.v20.i45.16795.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, et al. Gut–microbiota–metabolite axis in early renal function decline. PLoS One. 2015;10(8):e0134311. doi:10.1371/journal.pone.0134311.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Liu JS, Peng SH, Deng XY, Zhu DM, Javidiparsijani S, et al. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J Gastroenterol: WJG. 2013;19(40):6794–804. doi:10.3748/wjg.v19.i40.6794.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barrios C, Spector TD, Menni C. Blood, urine and faecal metabolite profiles in the study of adult renal disease. Arch Biochem Biophys. 2015;. doi:10.1016/j.abb.2015.10.006.

    PubMed  Google Scholar 

  28. Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Kottgen A, Levey AS, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382(9887):158–69. doi:10.1016/S0140-6736(13)60439-0.

    Article  PubMed  Google Scholar 

  29. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–70. doi:10.1038/ki.2011.368.

    Article  PubMed  Google Scholar 

  30. Johnson DWFK, Harvie B, Jardine M, Katz I, Langham R, Ludlow M, Mathew T, Nelson C, Phoon R, Polkinghorne K, Saunders J, Usherwood T, Wilmott S. Chronic kidney disease management in general practice. 3rd ed. Adelaide: Kidney Health Australia; 2015.

    Google Scholar 

  31. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52. doi:10.1016/S0140-6736(13)60595-4.

    Article  PubMed  Google Scholar 

  32. Chen ZY, Guo LL, Zhang YQ, Walzem RL, Pendergast JS, Printz RL, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest. 2014;124(8):3391–406. doi:10.1172/Jci72517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57(2):545–53. doi:10.1007/s10620-011-1887-4.

    Article  PubMed  Google Scholar 

  34. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. doi:10.1371/journal.pone.0009085.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308–15. doi:10.1038/ki.2012.345.

    Article  PubMed  Google Scholar 

  36. Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet. 1983;1(8335):1206–9.

    Article  CAS  PubMed  Google Scholar 

  37. Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014;15:87. doi:10.1186/1471-2369-15-87.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55. doi:10.1161/CIRCRESAHA.116.305360.

    Article  CAS  PubMed  Google Scholar 

  39. Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, et al. Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol: JASN. 2014;. doi:10.1681/ASN.2014060530.

    Google Scholar 

  40. Rossi M, Johnson DW, Xu H, Carrero JJ, Pascoe E, French C, et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nut Metab Cardiovasc Dis: NMCD. 2015;. doi:10.1016/j.numecd.2015.03.015.

    Google Scholar 

  41. Yasuda G, Shibata K, Takizawa T, Ikeda Y, Tokita Y, Umemura S, et al. Prevalence of constipation in continuous ambulatory peritoneal dialysis patients and comparison with hemodialysis patients. Am J Kidney Dis: Off J Nat Kidney Found. 2002;39(6):1292–9. doi:10.1053/ajkd.2002.33407.

    Article  Google Scholar 

  42. Wu MJ, Chang CS, Cheng CH, Chen CH, Lee WC, Hsu YH, et al. Colonic transit time in long-term dialysis patients. Am J Kidney Dis: Off J Nat Kidney Found. 2004;44(2):322–7.

    Article  Google Scholar 

  43. Stephen AM, Wiggins HS, Cummings JH. Effect of changing transit time on colonic microbial metabolism in man. Gut. 1987;28(5):601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Resmini E, Parodi A, Savarino V, Greco A, Rebora A, Minuto F, et al. Evidence of prolonged orocecal transit time and small intestinal bacterial overgrowth in acromegalic patients. J Clin Endocrinol Metab. 2007;92(6):2119–24. doi:10.1210/jc.2006-2509.

    Article  CAS  PubMed  Google Scholar 

  45. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45(Suppl):S120–7. doi:10.1097/MCG.0b013e31822fecfe.

    Article  CAS  PubMed  Google Scholar 

  46. Booijink CC, Zoetendal EG, Kleerebezem M, de Vos WM. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol. 2007;2(3):285–95. doi:10.2217/17460913.2.3.285.

    Article  CAS  PubMed  Google Scholar 

  47. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roza AM, Edmiston CE Jr, Frantzides C, Moore GH, Nowak TV, Johnson CP, et al. Untreated diabetes mellitus promotes intestinal microbial overgrowth. Am J Surg. 1992;163(4):417–21.

    Article  CAS  PubMed  Google Scholar 

  49. Strid H, Simren M, Stotzer PO, Abrahamsson H, Bjornsson ES. Delay in gastric emptying in patients with chronic renal failure. Scand J Gastroenterol. 2004;39(6):516–20. doi:10.1080/00365520410004505.

    Article  CAS  PubMed  Google Scholar 

  50. Strid H, Simren M, Stotzer PO, Ringstrom G, Abrahamsson H, Bjornsson ES. Patients with chronic renal failure have abnormal small intestinal motility and a high prevalence of small intestinal bacterial overgrowth. Digestion. 2003;67(3):129–37.

    Article  PubMed  Google Scholar 

  51. Kolida S, Gibson GR. Prebiotic capacity of inulin-type fructans. J Nutr. 2007;137(11 Suppl):2503S–6S.

    CAS  PubMed  Google Scholar 

  52. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    CAS  PubMed  Google Scholar 

  53. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.

    CAS  PubMed  Google Scholar 

  54. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. doi:10.2337/db07-1403.

    Article  CAS  PubMed  Google Scholar 

  55. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55. doi:10.1161/CIRCRESAHA.116.305360.

    Article  CAS  PubMed  Google Scholar 

  56. McFarland LV. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014;4(8):e005047. doi:10.1136/bmjopen-2014-005047.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9(1):45. doi:10.1186/1550-2783-9-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta P, Andrew H, Kirschner BS, Guandalini S. Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastr Nutr. 2000;31(4):453–7. doi:10.1097/00005176-200010000-00024.

    Article  CAS  Google Scholar 

  59. Parassol N, Freitas M, Thoreux K, Dalmasso G, Bourdet-Sicard R, Rampal P. Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res Microbiol. 2005;156(2):256–62. doi:10.1016/j.resmic.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  60. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9(3):804–16. doi:10.1111/j.1462-5822.2006.00836.x.

    Article  CAS  PubMed  Google Scholar 

  61. Sui W, Tan J, Guo J, Du G, Dai Y. An altered TH1/TH2 and pro-inflammatory cytokine profile in patients with end-stage renal disease detected by suspension array technology. Ren Fail. 2009;31(1):1–5. doi:10.1080/08860220802516449.

    Article  CAS  PubMed  Google Scholar 

  62. Alvarez-Lara MA, Carracedo J, Ramirez R, Martin-Malo A, Rodriguez M, Madueno JA, et al. The imbalance in the ratio of Th1 and Th2 helper lymphocytes in uraemia is mediated by an increased apoptosis of Th1 subset. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc Eur Renal Assoc. 2004;19(12):3084–90. doi:10.1093/ndt/gfh382.

    Article  CAS  Google Scholar 

  63. Hwang YJ, Yun MO, Jeong KT, Park JH. Uremic toxin indoxyl 3-sulfate regulates the differentiation of Th2 but not of Th1 cells to lessen allergic asthma. Toxicol Lett. 2014;225(1):130–8. doi:10.1016/j.toxlet.2013.11.027.

    Article  CAS  PubMed  Google Scholar 

  64. Hwang SJ, Hwang YJ, Yun MO, Kim JH, Oh GS, Park JH. Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis. Toxicol Lett. 2013;220(2):109–17. doi:10.1016/j.toxlet.2013.04.016.

    Article  CAS  PubMed  Google Scholar 

  65. Wilson CB. Immunologic basis for increased susceptibility of the neonate to infection. J Pediatr. 1986;108(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  66. Holt PG. Environmental factors and primary T-cell sensitisation to inhalant allergens in infancy: reappraisal of the role of infections and air pollution. Pediatr Allergy Immunol: Off Publ Eur Soc Pediatr Allergy Immunol. 1995;6(1):1–10.

    Article  Google Scholar 

  67. Bowman LM, Holt PG. Selective enhancement of systemic Th1 immunity in immunologically immature rats with an orally administered bacterial extract. Infect Immun. 2001;69(6):3719–27. doi:10.1128/IAI.69.6.3719-3727.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feng T, Wang L, Schoeb TR, Elson CO, Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med. 2010;207(6):1321–32. doi:10.1084/jem.20092253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crabb JH, Finberg R, Onderdonk AB, Kasper DL. T cell regulation of Bacteroides fragilis-induced intraabdominal abscesses. Rev Infect Dis. 1990;12(Suppl 2):S178–84.

    Article  PubMed  Google Scholar 

  70. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98. doi:10.1016/j.cell.2009.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, et al. T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA. 1996;93(21):11774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dalton JE, Cruickshank SM, Egan CE, Mears R, Newton DJ, Andrew EM, et al. Intraepithelial gammadelta + lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology. 2006;131(3):818–29. doi:10.1053/j.gastro.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  73. Ismail AS, Behrendt CL, Hooper LV. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol. 2009;182(5):3047–54. doi:10.4049/jimmunol.0802705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22(1–3):92–6.

    CAS  PubMed  Google Scholar 

  75. Ranganathan N, Patel BG, Ranganathan P, Marczely J, Dheer R, Pechenyak B, et al. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J. 2006;52(1):70–9. doi:10.1097/01.mat.0000191345.45735.00.

    Article  PubMed  Google Scholar 

  76. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin. 2009;25(8):1919–30. doi:10.1185/03007990903069249.

    Article  CAS  PubMed  Google Scholar 

  77. Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther. 2010;27(9):634–47. doi:10.1007/s12325-010-0059-9.

    Article  PubMed  Google Scholar 

  78. Guida B, Germano R, Trio R, Russo D, Memoli B, Grumetto L, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis: NMCD. 2014;24(9):1043–9. doi:10.1016/j.numecd.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  79. Cruz-Mora J, Martinez-Hernandez NE, Martin del Campo-Lopez F, Viramontes-Horner D, Vizmanos-Lamotte B, Munoz-Valle JF, et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr: Off J Counc Ren Nutr Nat Kidney Found. 2014;24(5):330–5. doi:10.1053/j.jrn.2014.05.006.

    Article  Google Scholar 

  80. Miranda Alatriste PV, Urbina Arronte R, Gomez Espinosa CO, Espinosa Cuevas Mde L. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp. 2014;29(3):582–90. doi:10.3305/nh.2014.29.3.7179.

    PubMed  Google Scholar 

  81. Kajander K, Myllyluoma E, Rajilic-Stojanovic M, Kyronpalo S, Rasmussen M, Jarvenpaa S, et al. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther. 2008;27(1):48–57. doi:10.1111/j.1365-2036.2007.03542.x.

    Article  CAS  PubMed  Google Scholar 

  82. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. doi:10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  83. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62–73. doi:10.1128/IAI.05496-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280. doi:10.1371/journal.pbio.0060280.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66. doi:10.1038/ismej.2007.3.

    Article  CAS  PubMed  Google Scholar 

  86. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–9. doi:10.1038/nature12503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Briskey.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briskey, D., Tucker, P., Johnson, D.W. et al. The role of the gastrointestinal tract and microbiota on uremic toxins and chronic kidney disease development. Clin Exp Nephrol 21, 7–15 (2017). https://doi.org/10.1007/s10157-016-1255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1255-y

Keywords

Navigation