Skip to main content
Log in

Convergent Interpolation to Cauchy Integrals over Analytic Arcs

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider multipoint Padé approximation to Cauchy transforms of complex measures. We show that if the support of a measure is an analytic Jordan arc and if the measure itself is absolutely continuous with respect to the equilibrium distribution of that arc with Dini-smooth nonvanishing density, then the diagonal multipoint Padé approximants associated with appropriate interpolation schemes converge locally uniformly to the approximated Cauchy transform in the complement of the arc. This asymptotic behavior of Padé approximants is deduced from the analysis of underlying non-Hermitian orthogonal polynomials, for which we use classical properties of Hankel and Toeplitz operators on smooth curves. A construction of the appropriate interpolation schemes is explicit granted the parametrization of the arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Ahlfors, Complex Analysis. International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1979).

    MATH  Google Scholar 

  2. A. Antoulas, Approximation of Large-Scale Dynamical Systems. Advances in Design and Control, vol. 6 (SIAM, Philadelphia, 2005).

    MATH  Google Scholar 

  3. A.I. Aptekarev, Sharp constant for rational approximation of analytic functions, Mat. Sb. 193(1), 1–72 (2002). English transl. in Math. Sb. 193(1–2), 1–72 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  4. A.I. Aptekarev, W.V. Assche, Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight, J. Approx. Theory 129, 129–166 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. G.A. Baker, Existence and convergence of subsequences of Padé approximants, J. Math. Anal. Appl. 43, 498–528 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  6. G.A. Baker, P. Graves-Morris, Padé Approximants. Encyclopedia of Mathematics and its Applications, vol. 59 (Cambridge University Press, Cambridge, 1996).

    MATH  Google Scholar 

  7. G.A. Baker Jr., Quantitative Theory of Critical Phenomena (Academic Press, Boston, 1990).

    Google Scholar 

  8. L. Baratchart, Rational and meromorphic approximation in L p of the circle: system-theoretic motivations, critical points and error rates, in Computational Methods and Function Theory, ed. by N. Papamichael, St. Ruscheweyh, E.B. Saff. Approximations and Decompositions, vol. 11 (World Scientific, River Edge, 1999), pp. 45–78.

    Google Scholar 

  9. L. Baratchart, M. Yattselev, Multipoint Padé approximants to complex Cauchy transforms with polar singularities, J. Approx. Theory 156(2), 187–211 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Baxter, A convergence equivalence related to polynomials orthogonal on the unit circle, Trans, Am. Math. Soc. 79, 471–487 (1961).

    Article  MathSciNet  Google Scholar 

  11. A. Böttcher, Y.I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics, vol. 154 (Birkhäuser, Basel, 1997).

    MATH  Google Scholar 

  12. C. Brezinski, M. Redivo-Zaglia, Extrapolation Methods: Theory and Practice (North-Holland, Amsterdam, 1991).

    MATH  Google Scholar 

  13. J.C. Butcher, Implicit Runge–Kutta processes, Math. Comput. 18, 50–64 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  14. R.J. Cameron, C.M. Kudsia, R.R. Mansour, Microwave Filters for Communication Systems (Wiley, New York, 2007).

    Google Scholar 

  15. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lectures in Mathematics, vol. 3 (Am. Math. Soc., Providence, 2000).

    MATH  Google Scholar 

  16. P. Duren, Theory of H p Spaces (Dover, New York, 2000).

    Google Scholar 

  17. F.D. Gakhov, Boundary Value Problems (Dover, New York, 1990).

    MATH  Google Scholar 

  18. T.W. Gamelin, Uniform Algebras (Prentice-Hall, Englewood Cliffs, 1973).

    MATH  Google Scholar 

  19. J.B. Garnett, Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236 (Springer, New York, 2007).

    Google Scholar 

  20. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds, Int. J. Control 39(6), 1115–1193 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  21. A.A. Gonchar, Rational approximation, Zap. Nauchn. Sem. Leningrad. Otdel Mat. Inst. Stekl. (1978). English trans. in J. Sov. Math. 26(5) (1984).

  22. A.A. Gonchar, On uniform convergence of diagonal Padé approximants, Math. USSR Sb. 43, 527–546 (1982).

    Article  MATH  Google Scholar 

  23. A.A. Gonchar, G. López Lagomasino, On Markov’s theorem for multipoint Padé approximants, Mat. Sb. 105(4), 512–524 (1978). English transl. in Math. USSR Sb. 34(4), 449–459 (1978).

    MathSciNet  Google Scholar 

  24. A.A. Gonchar, E.A. Rakhmanov, Equilibrium distributions and the degree of rational approximation of analytic functions, Mat. Sb. 134(176)(3), 306–352 (1987). English transl. in Math. USSR Sb. 62(2), 305–348 (1989).

    Google Scholar 

  25. W.B. Gragg, On extrapolation algorithms for ordinary initial value problems, SIAM J. Numer. Anal. 2, 384–403 (1865).

    MathSciNet  Google Scholar 

  26. C. Hermite, Sur la fonction exponentielle, C.R. Acad. Sci. Paris 77, 18–24, 74–79, 226–233, 285–293 (1873).

  27. A. Iserles, S.P. Norsett, Order Stars (Chapman and Hall, London, 1991).

    MATH  Google Scholar 

  28. A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, M. Vanlessen, The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1], Adv. Math. 188(2), 337–398 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  29. A.L. Levin, D.S. Lubinsky, Best rational approximation of entire functions whose MacLaurin series decrease rapidly and smoothly, Trans. Am. Math. Soc. 293, 533–546 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Levin, Development of nonlinear transformations for improving convergence of sequences, Int. J. Comput. Math. B 3, 371–388 (1973).

    Article  Google Scholar 

  31. D.S. Lubinsky, Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture, Ann. Math. 157(3), 847–889 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  32. A.P. Magnus, CFGT determination of Varga’s constant “1/9”, Inst. Preprint B-1348. Belgium: Inst. Math. U.C.L., 1986.

  33. A.P. Magnus, Toeplitz matrix techniques and convergence of complex weight Padé approximants, J. Comput. Appl. Math. 19, 23–38 (1987).

    MATH  MathSciNet  Google Scholar 

  34. A.A. Markov, Deux démonstrations de la convergence de certaines fractions continues, Acta Math. 19, 93–104 (1895).

    Article  MathSciNet  Google Scholar 

  35. K.T.-R. McLaughlin, P.D. Miller, The \(\bar{\partial}\) steepest descent method for orthogonal polynomials on the real line with varying weight. http://arxiv.org/abs/0805.1980.

  36. S. Mergelyan, Uniform approximation to functions of a complex variable, Usp. Mat. Nauk 2(48), 31–122 (1962). English transl. in Am. Math. Soc. 3, 294–391 (1962).

    MathSciNet  Google Scholar 

  37. J. Nuttall, Convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31, 147–153 (1970).

    Article  MathSciNet  Google Scholar 

  38. J. Nuttall, Padé polynomial asymptotic from a singular integral equation, Constr. Approx. 6(2), 157–166 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Nuttall, S.R. Singh, Orthogonal polynomials and Padé approximants associated with a system of arcs, J. Approx. Theory 21, 1–42 (1980).

    Article  MathSciNet  Google Scholar 

  40. H.-U. Opitz, K. Scherer, On the rational approximation of e x on [0,∞), Constr. Approx. 1, 195–216 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Padé, Sur la représentation approchée d’une fonction par des fractions rationnelles, Ann. Sci. Ecole Norm. Sup. 9(3), 3–93 (1892).

    MathSciNet  Google Scholar 

  42. O.G. Parfenov, Estimates of the singular numbers of a Carleson operator, Mat. Sb. 131(171), 501–518 (1986). English. transl. in Math. USSR Sb. 59, 497–514 (1988).

    Google Scholar 

  43. J.R. Partington, Interpolation, Identification and Sampling (Oxford University Press, Oxford, 1997).

    MATH  Google Scholar 

  44. Ch. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41, 775–780 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  45. Ch. Pommerenke, Boundary Behavior of Conformal Maps. Grundlehren der Math. Wissenschaften, vol. 299 (Springer, Berlin, 1992).

    Google Scholar 

  46. V.A. Prokhorov, Rational approximation of analytic functions, Mat. Sb. 184(2), 3–32 (1993). English transl. in Russ. Acad. Sci., Sb., Math. 78(1), 139–164 (1994).

    Google Scholar 

  47. C. Runge, Zur Theorie der eindeutigen analytischen Funktionen, Acta Math. 6, 228–244 (1885).

    Google Scholar 

  48. E.B. Saff, An extension of Montessus de Ballore’s theorem on the convergence of interpolating rational functions, J. Approx. Theory 6, 63–67 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  49. E.B. Saff, V. Totik, Logarithmic Potentials with External Fields. Grundlehren der Math. Wissenschaften, vol. 316 (Springer, Berlin, 1997).

    MATH  Google Scholar 

  50. C.L. Siegel, Transcendental Numbers (Princeton Univ. Press, Princeton, 1949).

    MATH  Google Scholar 

  51. S.L. Skorokhodov, Padé approximants and numerical analysis of the Riemann zeta function. Z. Vychisl. Mat. Fiz. 43(9), 1330–1352 (2003). English trans. in Comput. Math. Math. Phys. 43(9), 1277–1298 (2003).

    MATH  MathSciNet  Google Scholar 

  52. H. Stahl, Structure of extremal domains associated with an analytic function, Complex Var. Theory Appl. 4, 339–356 (1985).

    MATH  MathSciNet  Google Scholar 

  53. H. Stahl, Orthogonal polynomials with complex valued weight function. I, II, Constr. Approx. 2(3), 225–240, 241–251 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  54. H. Stahl, On the convergence of generalized Padé approximants, Constr. Approx. 5(2), 221–240 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  55. H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Theory 91, 139–204 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  56. H. Stahl, V. Totik, General Orthogonal Polynomials. Encycl. Math., vol. 43 (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  57. S.P. Suetin, Uniform convergence of Padé diagonal approximants for hyperelliptic functions, Mat. Sb. 191(9), 81–114 (2000). English transl. in Math. Sb. 191(9), 1339–1373 (2000).

    MathSciNet  Google Scholar 

  58. J.A. Tjon, Operator Padé approximants and three body scattering, in Padé and Rational Approximation, ed. by E.B. Saff, R.S. Varga (1977), pp. 389–396.

  59. L.N. Trefethen, J.A.C. Weideman, T. Schmelzer, Talbot quadratures and rational approximation, BIT Numer. Math. 46, 653–670 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  60. A. Vitushkin, Conditions on a set which are necessary and sufficient in order that any continuous function, analytic at its interior points, admit uniform approximation by rational functions, Dokl. Akad. Nauk SSSR 171, 1255–1258 (1966). English transl. in Sov. Math. Dokl. 7, 1622–1625 (1966).

    MathSciNet  Google Scholar 

  61. J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain. Colloquium Publications, vol. 20 (Am. Math. Soc., New York, 1935).

    Google Scholar 

  62. E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10, 189–371 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Yattselev.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratchart, L., Yattselev, M. Convergent Interpolation to Cauchy Integrals over Analytic Arcs. Found Comput Math 9, 675–715 (2009). https://doi.org/10.1007/s10208-009-9042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-009-9042-8

Keywords

Mathematics Subject Classification (2000)

Navigation