Skip to main content
Log in

Asymptotic Analysis of Numerical Steepest Descent with Path Approximations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a variant of the numerical method of steepest descent for oscillatory integrals by using a low-cost explicit polynomial approximation of the paths of steepest descent. A loss of asymptotic order is observed, but in the most relevant cases the overall asymptotic order remains higher than a truncated asymptotic expansion at similar computational effort. Theoretical results based on number theory underpinning the mechanisms behind this effect are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Asheim, A combined Filon/asymptotic quadrature method for highly oscillatory problems, BIT 48(3), 425–448 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Asheim, D. Huybrechs, Local solutions to high frequency 2D scattering problems. Technical report, NTNU, Trondheim, 2008.

  3. P. Bettess, Short wave scattering, problems and techniques, Philos. Trans. R. Soc. Lond. A 362, 421–443 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bona, A Walk Through Combinatorics (World Scientific, Singapore, 2002).

    MATH  Google Scholar 

  5. M. Born, E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  6. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration. Computer Science and Applied Mathematics (Academic Press, New York, 1984).

    Google Scholar 

  7. A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math. 112(2), 197–219 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Erdélyi, Asymptotic Expansions (Dover, New York, 1956).

    MATH  Google Scholar 

  9. P. Henrici, Applied and Computational Complex Analysis, Vol. I (Wiley, New York, 1974).

    Google Scholar 

  10. D. Huybrechs, S. Olver, Superinterpolation in highly oscillatory quadrature. Technical report, in preparation.

  11. D. Huybrechs, S. Olver, in Highly Oscillatory Problems: Computation, Theory and Applications. Highly Oscillatory Quadrature (Cambridge Univ. Press., Cambridge, 2008). Chap. 2.

    Google Scholar 

  12. D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal. 44(3), 1026–1048 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Huybrechs, S. Vandewalle, The construction of cubature rules for multivariate highly oscillatory integrals, Math. Comput. 76(260), 1955–1980 (2007).

    MathSciNet  Google Scholar 

  14. D. Huybrechs, S. Vandewalle, A sparse discretisation for integral equation formulations of high frequency scattering problems, SIAM J. Sci. Comput. 29(6), 2305–2328 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Iserles, S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math. 44(4), 755–772 (2004).

    Article  MATH  Google Scholar 

  16. A. Iserles, S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. A. 461(2057), 1383–1399 (2005).

    Article  MATH  Google Scholar 

  17. A. Iserles, S.P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives, Math. Comput. 75, 1233–1258 (2006).

    Article  MATH  Google Scholar 

  18. W.P. Johnson, The curious history of Faà di Bruno’s formula, Am. Math. Mon. 109(3), 217–234 (2002).

    Article  MATH  Google Scholar 

  19. D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math. 67, 95–101 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  20. P.D. Miller, Applied Asymptotic Analysis (American Mathematical Society, Providence, 2006).

    MATH  Google Scholar 

  21. F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974).

    Google Scholar 

  22. S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, Eur. J. Appl. Math. 18, 435–447 (2006).

    Article  MathSciNet  Google Scholar 

  23. S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer. Anal. 26(2), 213–227 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Olver, On the quadrature of multivariate highly oscillatory integrals over non-polytope domains, Numer. Math. 103(4), 643–665 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Wojdylo, Computing the coefficients in Laplace’s method, SIAM Rev. 44(1), 76–96 (2006).

    Article  MathSciNet  Google Scholar 

  26. R. Wong, Asymptotic Approximations of Integrals. SIAM Classics (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Asheim.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asheim, A., Huybrechs, D. Asymptotic Analysis of Numerical Steepest Descent with Path Approximations. Found Comput Math 10, 647–671 (2010). https://doi.org/10.1007/s10208-010-9068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9068-y

Keywords

Mathematics Subject Classification (2000)

Navigation