Skip to main content
Log in

On Local Convergence of the Method of Alternating Projections

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The method of alternating projections is a classical tool to solve feasibility problems. Here we prove local convergence of alternating projections between subanalytic sets \(A,B\) under a mild regularity hypothesis on one of the sets. We show that the speed of convergence is \({\mathcal {O}}(k^{-\rho })\) for some \(\rho \in (0,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Attouch, J. Bolte, P. Redont, A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Mathematics of Operations Research 35(2) (2010), 438–457.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. H. Bauschke, J. M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM Review 38 (1996), 367–426.

    Article  MathSciNet  MATH  Google Scholar 

  3. H.H. Bauschke, P.L. Combettes, D.R. Luke. Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. Series A 19(7) (2002), 1334–1345.

    Article  MathSciNet  Google Scholar 

  4. H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang. Restricted normal cones and the method of alternating projections: theory. Set-Valued and Variational Analysis 21 (2013), 431–473.

    Article  MathSciNet  MATH  Google Scholar 

  5. H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang. Restricted normal cones and the method of alternating projections: applications. Set-Valued and Variational Analysis 21 (2013), 475–501.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.H. Bauschke, D. Noll. On cluster points of alternating projections. Serdica Math. Journal 39 (2013), 355–364.

    MathSciNet  Google Scholar 

  7. H.H. Bauschke, D. Noll. On the local convergence of the Douglas-Rachford algorithm. Archiv der Mathematik 102(6) (2014), 589–600.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Bierstone, P. Milman. Semianalytic and subanalytic sets. IHES Publ. Math. 67 (1988), 5–42.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bolte, A. Daniilidis, A.S. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Opt. 17(4) (2007), 1205–1223.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.M. Borwein, G. Li, L. Yao. Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM Journal on Optimization 24(1) (2014), 498–527.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.L. Combettes, H.J. Trussell. Method of successive projections for finding a common point of sets in metric space. Journal of Optimization Theory and Applications 67 (1990), 487–507.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Drusvyatskiy, A.D. Ioffe, A.S. Lewis. Alternating projections and coupling slope. arXiv:1401.7569v1 [math.OC] 29 Jan 2014.

  13. V. Elser. Solution of the crystallographic phase problem by iterated projections. Acta Crystallographica Section A. 59 (2003), 201–209.

    Google Scholar 

  14. M. Fabian. Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert space. Proc. London Math. Soc. s3-51 (1985), 113–126.

  15. H. Federer. Hausdorff measure and Lebesgue area. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 90–94.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35 (1972), 237–246.

    Google Scholar 

  17. R. Hesse, D. R. Luke. Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Opt. 23(4) (2013), 2397–2419.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.Y. Kruger. About regularity of collections of sets. Set-Valued Analysis 14(2) (2006), 187–206.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.Y. Kruger. On Fréchet subdifferentials. Optimization and related topics, 3. Journal of Mathematical Sciences 116(3) (2003), 3325–3358.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.S. Lewis, J. Malick. Alternating projections on manifolds. Math. Oper. Res. 33 (2008), 216–234.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.S. Lewis, R. Luke, J. Malick. Local linear convergence for alternating and averaged non convex projections. Found. Comp. Math. 9 (2009), 485–513.

    Article  MathSciNet  MATH  Google Scholar 

  22. B.S. Mordukhovich. Variational Analysis and Generalized Differentiation. Springer, New York, 2006.

    Google Scholar 

  23. J. von Neumann. Functional Operators, vol. II. Princeton University Press, Princeton, 1950.

    Google Scholar 

  24. R.A. Poliquin, R.T. Rockafellar, L. Thibault. Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000), 5231–5249.

    Article  MathSciNet  MATH  Google Scholar 

  25. R.T. Rockafellar, R.J.B. Wets. Variational Analysis. Grundlehren der mathematischen Wissenschaften, Springer Verlag 317, 2009.

  26. H.A. Schwarz. Über einige Abbildungsaufgaben. Gesammelte Mathematische Abhandlungen 11 (1869), 65–83.

    Google Scholar 

  27. M. Shiota. Geometry of Subanalytic and Semialgebraic Sets. Birkhäuser Verlag, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Noll.

Additional information

Communicated by Michael Todd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noll, D., Rondepierre, A. On Local Convergence of the Method of Alternating Projections. Found Comput Math 16, 425–455 (2016). https://doi.org/10.1007/s10208-015-9253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9253-0

Keywords

Mathematics Subject Classification

Navigation