Skip to main content
Log in

An Overview of an Acidic Uranium Mine Pit Lake (Caldas, Brazil): Composition of the Zooplankton Community and Limnochemical Aspects

Ein Überblick zu einem sauren Tagebausee in einer Urangrube (Caldas, Brasilien): Zusammensetzung des Zooplanktons und limnologische Aspecte

Una visión global del lago del hoyo de una mina ácida de uranio (Caldas, Brasil): Composición de la comunidad zooplancton y aspectos limnoquímicos

酸性铀矿采坑湖(卡尔达斯,巴西)综述:浮游动物群落组成和湖水水化学特征影响

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Water samples were collected quarterly for 1 year from the newly created Osamu Utsumi uranium mine pit lake, Brazil, which is affected by acid mine drainage (AMD). The water presented mean pH values of 3.8, high mean electrical conductivity values (2391 µS/cm), manganese (74 mg/L), sulfate (1413 mg/L) and uranium (3 mg/L). The density of rotifera was significantly higher than that of cladoceran. Rotifera Keratella americana, K. cochlearis and the Cladocera Bosminopsis deitersi, Bosmina sp., are being reported for the first time in samples from a uranium pit lake with AMD. Of the species registered, the order Bdelloidea was the most important in terms of density (17,500–77,778 ind/m3), since it occurred throughout the whole sampling period. The combined effect of moderately acidic pH and other potential stress factors, such as high concentrations of stable and radioactive contaminants, probably influenced the zooplankton species composition in the pit lake.

Zusammenfassung

Für ein Jahr wurden vierteljährlich Wasserproben aus dem jüngst hergestellten Tagebausee in der Osma Utsumi Urangrube (Brasilien) entnommen, der durch saure Grubenwässer (AMD) beeinträchtigt wird. Das Wasser hatte einen mittleren pH-Wert von 3,8, eine hohe mittlere elektrische Leitfähigkeit (2391 µS/cm) sowie Mangan- (74 mg/L), Sulfat- (1413 mg/L) und Urankonzentrationen (3 mg/L). Die Populationsdichte der Rotatorien war signifikant höher als die der Cladoceren. Das Vorkommen der Rotatorien Keratella Americana und K. cochlearis und der Cladoceren Bosminopsis deitersi und Bosmina sp. wurde erstmalig für saure Tagebauseen in Urangruben mit AMD-Einfluss dokumentiert. Von den registrierten Taxa war die Ordnung Bdelloidea das wichtigste hinsichtlich der Populationsdichte (17,500 bis 77,778 Ind/m³), da es während der gesamten Untersuchungszeit auftrat. Die Kombination aus moderat saurem pH und anderen potentiellen Stressfaktoren, wie z.B. hohe Konzentrationen an stabilen und radioaktiven Kontaminanten, beeinflussten wahrscheinlich die Artenzusammensetzung des Zooplanktons im Tagebausee.

Resumen

Muestras de aguas fueron colectadas trimestralmente durante un año en el nuevo lago del hoyo de mina de uranio Osamu Utsumi, Brasil, que es afectado por drenaje ácido de minas (AMD). El agua presentó un pH promedio de 3,8, altos valores de conductividad eléctrica (2391 µS/cm), manganeso (74 mg/L), sulfato (1413 mg/L) y uranio (3 mg/L). La densidad de rotífera fue significativamente mayor que la de cladocera. Rotifera Keratella americana, K. cochlearis y Cladocera Bosminopsis deitersi, Bosmina sp., son reportadas por primera vez en muestras de un lago de hoyo de mina de uranio afectado con AMD. De las especies registradas, el orden Bdelloidea fue el más importante en términos de densidad (17.500 a 77.778 ind/m3), ya que estuvieron presentes durante todo el período de muestreo. El efecto combinado de pH moderadamente ácido y otros factores de estrés, tales como altas concentraciones de contaminantes estables y radioactivos, probablemente influenció la composición de especies de zooplancton en el lago.

综述

水样取自巴西新建Osama Utsumi铀矿采坑湖的酸性矿井废水,每季度采水样一次,采样期一年。水样水化学特征:低pH值(平均3.8)、高电导率(平均值2391 µS/cm)、锰浓度74 mg/L、硫酸根浓度1413 mg/L、铀浓度3 mg/L。轮虫类动物密度远大于水蚤类动物密度。美洲龟甲轮虫、螺形龟甲轮虫、颈沟基合蚤和象鼻蚤首次在铀矿采坑湖酸性废水中检出。另外,蛭形轮虫目由于密度变化大(17,500~77,778 ind/m3)且在整个采样周期均有检出而引起关注。适度的PH值和高浓度的稳定与放射性污染物等潜在因素共同作用,影响着采坑湖中浮游动物的种类组成。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes SC, Figueiredo D, Marques RS, Castro BB, Pereira R, Gonçalves F (2007) Evaluation of water column and sediment toxicity from abandoned uranium mine using a battery of bioassays. Sci Total Environ 374:252–259

    Article  Google Scholar 

  • APHA (American Public Health Assoc) (1995) Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Assoc, American Water Works Assoc, Water Environment Federation, Washington

    Google Scholar 

  • Arnott SE, Vanni MJ (1993) Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74:2361–2380

    Article  Google Scholar 

  • ASTM (American Society for Testing and Materials) (1980) Annual Book of ASTM standards. PA, USA, Philadelphia

    Google Scholar 

  • Ayres M, Ayres MJr, Ayres DL, Santos AS (2005) BioEstat 2.0: Aplicações estatísticas na área das Ciências Biológicas e Médicas. Mamirauá, Editora Gráfica Ltda

  • Batty LC (2005) The potential importance of mine sites for biodiversity. Mine Water Environ 24(2):101–103

    Article  Google Scholar 

  • Belyaeva M, Deneke R (2007) Colonization of acidic mining lakes: Cydorus sphaericus and other Cladocera within a dynamic horizontal pH gradient (pH 3-7) in Lake Senftenberger See (Germany). Hydrobiologia 594:97–108

    Article  Google Scholar 

  • Belyaeva M, Deneke R (2013) The biology and ecosystems of acidic pit lakes. Zooplankton. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) acidic pit lakes. Springer, Berlin, pp 117–126. doi:10.1007/978-3-642-29384-9

    Google Scholar 

  • Campos MB, Azevedo H, Nascimento MRL, Roque CV, Rodgher S (2011) Environmental assessment of water from a uranium mine (Caldas, Minas Gerais State, Brazil) in a descommissioning operation. Environ Earth Sci 62:857–863

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  Google Scholar 

  • Ciszewski D, Aleksander-Kwaterczak U, Pociecha A, Szarek-Gwiazda E (2013) Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environ Monit Assess 185:9825–9842

    Article  Google Scholar 

  • De-Melo R, Hebert PDN (1994) A taxonomic reevaluation of North American Bosminidae. Can J Zool 72:1808–1825

    Article  Google Scholar 

  • Deneke R (2000) Review of rotifers and crustacean in highly acidic environments of pH values ≤ 3. Hydrobiologia 433:167–172

    Article  Google Scholar 

  • Durán AP, Rauch J, Gaston K (2013) Global spatial coincidence between protected areas and metal mining activities. Biolog Conserv 160:272–278

    Article  Google Scholar 

  • Eary LE, Castendyk DN (2013) Hardrock metal mine pit lakes: occurrence and geochemical characteristics. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic Pit Lakes. Springer, Berlin, pp 75–106. doi:10.1007/978-3-642-29384-9

    Google Scholar 

  • Elmoor-Loureiro LMA (1997) Manual de Identificação de Cladóceros Límnicos do Brasil. Universa, Brasília, Brazil

  • Elmoor-Loureiro LMA (2004) Morphological abnormalities in the cladoceran Ilyocryptus spinifer (Apipucos reservoir, Pernambuco State, Brazil). Braz J Biol 64:53–58

    Article  Google Scholar 

  • Ferrari CR (2010) Avaliação de efeitos de efluentes radioativos de mineração de urânio sobre características físicas, químicas e diversidade da comunidade zooplanctônica na Unidade de Tratamento de Minérios, na Represa das Antas e Represa Bortolan, Poços de Caldas (MG). Dissertação. Universidade de São Paulo, Brazil

  • Friese K, Herzsprung P, Schultze M (2013) Limnochemistry of water and sediments of acidic pit lakes pit lakes from coal and lignite mining. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) acidic pit lakes. Springer, Berlin, pp 42–57. doi:10.1007/978-3-642-29384-9

    Google Scholar 

  • Fukuma HT, De Nadai Fernandes EA, Nascimento MRL, Quinelato AL (2001) Separation and spectrophotometric determination of thorium contained in uranium concentrates. J Radioanal Nucl Ch 248:533–549

    Article  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. P Natl Acad Sci USA 105:5139–5144

    Article  Google Scholar 

  • Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for Physical and Chemical Analysis of Freshwaters, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Gomes HA, Nouailhetas Y, Silva NC, Mezrahi A, Almeida CEB, Rodrigues GS (2002) Biological response of Tradescantia stamen-hairs to high levels of natural radiation in the Poços de Caldas plateau. Braz Arch Biol Technol 45:301–307

    Article  Google Scholar 

  • Havens KE (1993) Acid and aluminum effects on osmoregulation and survival of the freshwater copepod Skistodiaptomus oregonensis. J Plankton Res 15:683–691

    Article  Google Scholar 

  • Holopainen IJ, Holopainen AL, Hämäläinen H, Rahkola-Sorsa M, Tkatcheva V, Viljanen M (2003) Effects of mining industry waste waters on a shallow lake ecosystem in Karelia, north-west Russia. Hydrobiologia 506–509(1–3):111–119

    Article  Google Scholar 

  • Hrdinka T, Sobr M, Fott J, Nedbalova L (2013) The unique environment of the most acidified permanently meromictic lake in the Czech Republic. Limnologica 43:417–426

    Article  Google Scholar 

  • Jak RG, Maas JL, Scholten MCT (1996) Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing freshwater plankton communities in enclosures. Water Res 30:1215–1227

    Article  Google Scholar 

  • Jersabek CD, Weithoff G, Weisse T (2011) Cephalodella acidophila n. sp. (Monogononta: Nommatidae), a new rotifer species from highly acidic mining lakes. Zootaxa 2939:50–58

    Google Scholar 

  • Kalin M, Cao Y, Smith M, Olaveson M (2001) Development of the phytoplankton community in a pit-lake in relation to water quality changes. Water Res 35:3215–3225

    Article  Google Scholar 

  • Koste W (1978) Rotatoria Die Rädertiere Mitteleuropas. Überordnung Monogononta, Gebrüder Borntraeger, Berlin

  • Kotov AA, Ishida S, Taylor DJ (2009) Revision of the genus Bosmina Baird 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies. Zool J Linn Soc Lond 156:1–51

    Article  Google Scholar 

  • Lefcort H, Vancura J, Lider EL (2010) 75 Years after mining ends stream insect diversity is still affected by heavy metals. Ecotoxicology 19:1416–1425

    Article  Google Scholar 

  • Lessmann D, Deneke R, Ender R, Hemm M, Kapfer M, Krumbeck H, Wollmann K, Nixdorf B (1999) Lake Plessa 107 (Lusatia, Germany) an extremely acidic shallow mining lake. Hydrobiologia 408(409):293–299

    Article  Google Scholar 

  • Locke A, Sprules WG (2000) Effects of acidic pH and phytoplankton on survival and condition of Bosmina longirostris and Daphnia pulex. Hydrobiologia 437:187–196

    Article  Google Scholar 

  • Luís AP, Teixeira P, Almeida SFP, Ector L, Matos JX, Ferreira da Silva EA (2009) Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding stream of Aljustrel mining area (Portugal). Water Air Soil Pollut 200:147–167

    Article  Google Scholar 

  • Lyew D, Sheppard JD (1997) Effects of physical parameters of a gravel bed on the activity of sulphate-reducing Bacteria in the presence of acid mine drainage. J Chem Technol Biotechnol 70:223–230

    Article  Google Scholar 

  • Lyew D, Sheppard JD (2001) Use of conductivity to monitor the treatment of acid mine drainage by sulphate-reducing Bacteria. Water Res 35:2081–2086

    Article  Google Scholar 

  • Mathews T, Beaugelin-Seiller K, Garnier-Laplace J, Gilbin R, Adam C, Della-Vedova C (2009) A probabilistic assessment of the chemical and radiologicalrisks of chronic exposure to uranium in freshwater ecosystems. Environ Sci Technol 43:6684–6690

    Article  Google Scholar 

  • Melão MGG, Rocha O (2006) Life history, population dynamics, standing biomass and production of Bosminopsis deitersi (Cladocera) in a shallow tropical reservoir. Acta Limnol Bras 18(4):433–450

    Google Scholar 

  • Moser M, Weisse T (2011) The most acidified Austrian lake in comparison to a neutralized mining lake. Limnologica 41:303–315

    Article  Google Scholar 

  • Nascimento MRL, Fukuma HT, Hortellani MA (1988) Projeto Itataia—Controle de processo na produção de ácidos fosfórico e urânio. Poços de Caldas: INB, (Manual de Métodos e Análises Químicas), Brazil

  • Nixdorf B, Wollmann K, Deneke R (1998) Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Berlin, pp 147–167. doi:10.1007/978-3-642-71954-7_8

    Chapter  Google Scholar 

  • Nixdorf B, Krumbeck H, Jander J, Beulker C (2003) Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard waters lakes. Acta Oecol 24:S281–S288

    Article  Google Scholar 

  • Nixdorf B, Lessmann D, Deneke R (2005) Mining lakes in a disturbed landscape: application of the EC Water Framework Directive and future management strategies. Ecol Eng 24:67–73

    Article  Google Scholar 

  • Nóbrega FA, Lima HM, Leite AL (2008) Análise de múltiplas variáveis no fechamento da mina-Estudo de caso da pilha de estéril BF-4, Mina Osamu Utsumi, INB Caldas, Minas Gerais. Revista Escola de Minas Ouro Preto 61:197–202

  • Nogrady T, Pourriot R (1995) Rotifera: The Notommatidae. In: Nogrady T, Dumont HJ (eds) Guides to the Identification of the macroinvertebrates of the Continental Waters of the World. SPB Academic Publications, New York

    Google Scholar 

  • Nogueira MG (2001) Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo Brazil. Hydrobiologia 455:1–18

    Article  Google Scholar 

  • Riethmuller N, Markich SJR, Van Dam A, Parry D (2001) Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (Hydra viridissima). Biomarkers 6:43–51

    Article  Google Scholar 

  • Rocha O, Güntzel AM (1999) Branchiopoda, Cladocera. In: Ismael D, Valenti WC. Matsumura-Tundisi T, Rocha O (Org), Biodiversidade do estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX, 4: Invertebrados de água doce. 1st, edit, Fapesp, São Paulo, Brazil, p 107-120

  • Rodgher S, Azevedo H, Ferrari CR, Roque CV, Roqui LB, Campos MB, Nascimento MRL (2013) Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil). Environ Monit Assess 185:2395–2406. doi:10.1007/s10661-012-2719-5

    Article  Google Scholar 

  • Sanchez-Ortiz JR, Sarma SSS, Nandini S (2010) Comparative population growth of Ceriodaphnia dubia and Daphnia pulex (Cladocera) exposed to zinc toxicity. J Environ Sci Heal A 45(1):37–41

    Article  Google Scholar 

  • Saro L, Lopes Y, Chastinet CBA, Cohin-de-Pinho SJ, Moreira-Santos M, Silva EM, Ribeiro R (2011) Potential re-colonisation by cladocerans of an acidic tropical pond. Chemosphere 82:1072–1079

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  Google Scholar 

  • Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. J Environ Radioact 79(1):55–83

    Article  Google Scholar 

  • Shiel RJ, Koste W (1992) Rotifera fron Australian inland waters. VIII. Trichocercidae (Monogononta). T Roy Soc South Aust 116:1–27

    Google Scholar 

  • Shiel RJ, Koste W (1993) Rotifera from Australian inland waters. IX. Gastropodidae, Synchaetidae, Asplanchinidae (Rotifera Monogononta). T Roy Soc South Aust 117:111–139

    Google Scholar 

  • Silva NC, Taddei MHT, Cipriani M, Fernandes EAN (2000) Radioactivity associated with sediments from the Pocos de Caldas Plateau—a Brazilian area of high level natural radiation. In: Poster Proceedings 5th international conference on high levels of natural radiation and radon areas: radiation dose and health effects, Munich, p 69

  • Soucek DJ, Cherry DS, Currie RJ, Latimer HA, Trent GC (2000) Laboratory to field validation in an integrative assessment of an acid mine drainage-impacted watershed. Environ Toxicol Chem 19:1036–1043

    Google Scholar 

  • Soucek DJ, Cherry DS, Zipper CE (2001) Aluminum-dominated acute toxicity to the cladoceran Ceriodaphnia dubia in neutral waters downstram of an acid mine drainage discharge. Can J Fish Aquat Sci 58:2396–2404

    Article  Google Scholar 

  • Turner PN (1987) Keratella rotifers found in Brazil, and a survey of Keratella rotifers from the Neotropics. Amazoniana 2:223–236

    Google Scholar 

  • Van Damme PA, Hammel C, Ayala A, Bervorts L (2008) Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia). Environ Pollut 156:1061–1068

    Article  Google Scholar 

  • Veiga LHS, Sachet I, Melo V, Magalhães MH, Amaral ECS (2000) Brazilian areas of high background radiation. Are levels really high? In: Poster Proceedings 5th international conference on high levels of natural radiation and radon areas: radiation dose and health effects, Munich, p 62

  • Viayev RM (2010) An overview of the rotifers of the family Nommatidae (Rotifera: Monogononta: Ploima) from Ira. Caspian J Env Sci 8:127–139

    Google Scholar 

  • Weithoff G (2005) On the ecology of the rotifer Cephalodella hoodii from an extremely acidic lake. Freshwater Biol 50:1464–1473

    Article  Google Scholar 

  • Wendt-Potthoff K (2013) The biology and ecosystems of acidic pit lakes. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Berlin, p 107

    Google Scholar 

  • Woelfl S, Whitton BA (2000) Sampling, preservation and quantification of biological samples from highly acidic environments (pH ≤ 3). Hydrobiologia 433:173–180

    Article  Google Scholar 

  • Wollmann K, Deneke R, Nixdorf B, Packroff G (2000) Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2-4). Hydrobiologia 433:3–14

    Article  Google Scholar 

  • World Health Organization (WHO) (2004) Manganese and its Compounds: Environmental Aspects Concise International Chemical Assessment Document 63. World Health Org, Geneva

    Google Scholar 

  • Xi Y, Jin H, Xie P, Huang X (2002) Morphological variation of Keratella cochlearis (Rotatoria) in a shallow, eutrophic subtropical Chinese Lake. J Freshwater Ecol 17:447–454

    Article  Google Scholar 

  • Zanata LH, Espíndola ELG, Rocha O, Pereira RHG (2008) Morphological abnormalities in Cladocera (Branchiopoda) in a cascade of reservoirs in the middle and lower Tietê river (São Paulo, Brazil). Braz J Biol 68(3):681–682

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the State of Minas Gerais Research Aid Foundation (FAPEMIG APQ-7807-5.04/07). We also thank AL Bruschi, MB Campos, HLA Caponi, EO Lima, and LB Ronqui for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heliana de Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, C.R., de Azevedo, H., Wisniewski, M.J.S. et al. An Overview of an Acidic Uranium Mine Pit Lake (Caldas, Brazil): Composition of the Zooplankton Community and Limnochemical Aspects. Mine Water Environ 34, 343–351 (2015). https://doi.org/10.1007/s10230-015-0333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0333-9

Keywords

Navigation