Skip to main content
Log in

Nonnegative solutions of an indefinite sublinear Robin problem I: positivity, exact multiplicity, and existence of a subcontinuum

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^{N}\) (\(N\ge 1\)) be a smooth bounded domain, \(a\in C({\overline{\Omega }})\) a sign-changing function, and \(0\le q<1\). We investigate the Robin problem

where \(\alpha \in [-\infty ,\infty )\) and \(\nu \) is the unit outward normal to \(\partial \Omega \). Due to the lack of strong maximum principle structure, this problem may have dead core solutions. However, for a large class of weights a we recover a positivity property when q is close to 1, which considerably simplifies the structure of the solution set. Such property, combined with a bifurcation analysis and a suitable change of variables, enables us to show the following exactness result for these values of q: \((P_{\alpha })\) has exactly one nontrivial solution for \(\alpha \le 0\), exactly two nontrivial solutions for \(\alpha >0\) small, and no such solution for \(\alpha >0\) large. Assuming some further conditions on a, we show that these solutions lie in a subcontinuum. These results partially rely on (and extend) our previous work (Kaufmann et al. in J Differ Equ 263:4481–4502, 2017), where the cases \(\alpha =-\infty \) (Dirichlet) and \(\alpha =0\) (Neumann) have been considered. We also obtain some results for arbitrary \(q\in \left[ 0,1\right) \). Our approach combines mainly bifurcation techniques, the sub-supersolutions method, and a priori lower and upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alama, S.: Semilinear elliptic equations with sublinear indefinite nonlinearities. Adv. Differ. Equ. 4, 813–842 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439–475 (1993)

    Article  MathSciNet  Google Scholar 

  3. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  Google Scholar 

  4. Amann, H., López-Gómez, J.: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Differ. Equ. 146, 336–374 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bandle, C., Pozio, M., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303, 487–501 (1987)

    Article  MathSciNet  Google Scholar 

  6. Bandle, C., Pozio, M.A., Tesei, A.: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z. 199, 257–278 (1988)

    Article  MathSciNet  Google Scholar 

  7. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 2, 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  8. Bonheure, D., Gomes, J.M., Habets, P.: Multiple positive solutions of superlinear elliptic problems with sign-changing weight. J. Differ. Equ. 214, 36–64 (2005)

    Article  MathSciNet  Google Scholar 

  9. Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial Differ. Equ. 22(4), 483–494 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chabrowski, J., Tintarev, C.: An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition. NoDEA Nonlinear Differ. Equ. Appl. 21, 519–540 (2014)

    Article  MathSciNet  Google Scholar 

  11. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  Google Scholar 

  12. Delgado, M., Suárez, A.: On the uniqueness of positive solution of an elliptic equation. Appl. Math. Lett. 18, 1089–1093 (2005)

    Article  MathSciNet  Google Scholar 

  13. García-Melián, J., Rossi, J.D., Sabina de Lis, J.C.: Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions. Commun. Contemp. Math. 11, 585–613 (2009)

    Article  MathSciNet  Google Scholar 

  14. Godoy, T., Kaufmann, U.: On strictly positive solutions for some semilinear elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 20, 779–795 (2013)

    Article  MathSciNet  Google Scholar 

  15. Godoy, T., Kaufmann, U.: Existence of strictly positive solutions for sublinear elliptic problems in bounded domains. Adv. Nonlinear Stud. 14, 353–359 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hernández, J., Mancebo, F., Vega, J.: On the linearization of some singular, nonlinear elliptic problems and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 777–813 (2002)

    Article  MathSciNet  Google Scholar 

  17. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Positivity results for indefinite sublinear elliptic problems via a continuity argument. J. Differ. Equ. 263, 4481–4502 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity. NoDEA Nonlinear Differ. Equ. Appl. 25, Art. 12, 34 pp (2018)

  19. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete Contin. Dyn. Syst. 40(2), 817–845 (2020)

  20. Korman, P., Ouyang, T.: Exact multiplicity results for two classes of boundary value problems. Differ. Integral Equ. 6, 1507–1517 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Le, V.K., Schmitt, K.: Some general concepts of sub- and supersolutions for nonlinear elliptic problems. Topol. Methods Nonlinear Anal. 28, 87–103 (2006)

    MathSciNet  MATH  Google Scholar 

  22. López-Gómez, J.: On the existence of positive solutions for some indefinite superlinear elliptic problems. Commun. Partial Differ. Equ. 22, 1787–1804 (1997)

    Article  MathSciNet  Google Scholar 

  23. López-Gómez, J.: Spectral theory and nonlinear functional analysis. In: Research Notes in Mathematics, vol. 426. Chapman & Hall/CRC, Boca Raton, FL (2001)

  24. López-Gómez, J.: Linear Second Order Elliptic Operators. World Scientific, Hackensack (2013)

    Book  Google Scholar 

  25. Morales-Rodrigo, C., Suárez, A.: Uniqueness of solution for elliptic problems with non-linear boundary conditions. Commun. Appl. Nonlinear Anal. 13, 69–78 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+\lambda u+hu^{p}=0\) on compact manifolds. II. Indiana Univ. Math. J. 40, 1083–1141 (1991)

    Article  MathSciNet  Google Scholar 

  27. Pozio, M.A., Tesei, A.: Support properties of solution for a class of degenerate parabolic problems. Commun. Partial Differ. Equ. 12, 47–75 (1987)

    Article  MathSciNet  Google Scholar 

  28. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  Google Scholar 

  29. Ramos Quoirin, H., Umezu, K.: An indefinite concave-convex equation under a Neumann boundary condition II. Topol. Methods Nonlinear Anal. 49, 739–756 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Ramos Quoirin, H., Umezu, K.: A loop type component in the non-negative solutions set of an indefinite elliptic problem. Commun. Pure Appl. Anal. 17, 1255–1269 (2018)

    Article  MathSciNet  Google Scholar 

  31. Rossi, J.D.: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem. In: Stationary Partial Differential Equations, vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, pp. 311–406 (2005)

  32. Tehrani, H.: On indefinite superlinear elliptic equations. Calc. Var. Partial Differ. Equ. 4, 139–153 (1996)

    Article  MathSciNet  Google Scholar 

  33. Tellini, A.: High multiplicity of positive solutions for superlinear indefinite problems with homogeneous Neumann boundary conditions. J. Math. Anal. Appl. 467, 673–698 (2018)

    Article  MathSciNet  Google Scholar 

  34. Umezu, K.: Blowing-up properties of the positive principal eigenvalue for indefinite Robin-type boundary conditions. Rocky Mountain J. Math. 40, 673–694 (2010)

    Article  MathSciNet  Google Scholar 

  35. Whyburn, G.T.: Topological analysis, 2nd edn. In: Princeton Mathematical Series, vol. 23. Princeton University Press, Princeton, NJ (1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Ramos Quoirin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Uriel Kaufmann: Partially supported by Secyt-UNC 33620180100016CB.

Humberto Ramos Quoirin: Supported by Fondecyt Grants 1161635, 1171532, 1171691, 1181825.

Kenichiro Umezu: Supported by JSPS KAKENHI Grant Numbers JP15K04945 and JP18K03353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufmann, U., Ramos Quoirin, H. & Umezu, K. Nonnegative solutions of an indefinite sublinear Robin problem I: positivity, exact multiplicity, and existence of a subcontinuum. Annali di Matematica 199, 2015–2038 (2020). https://doi.org/10.1007/s10231-020-00954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00954-x

Keywords

Mathematics Subject Classification

Navigation