Skip to main content

Advertisement

Log in

The impact of sea surface currents in wave power potential modeling

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ardhuin F, Bertotti L, Bidlot J, Cavaleri L, Filipetto V, Lefevre J, Wittmann P (2007) Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Eng 34(3–4):526–541

    Article  Google Scholar 

  • Akpınar A, Kömürcü M (2013) Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Appl Energy 101:502–512

    Article  Google Scholar 

  • Arinaga R, Cheung KF (2012) Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew Energy 39:49–64

    Article  Google Scholar 

  • Astitha M, Kallos G, Mihalopoulos N (2005) Analysis of air quality observations with the aid of the source-receptor relationship approach. J Air Waste Manag Assoc 55:523–535

    Article  Google Scholar 

  • Aoun NS, Harajli HA, Queffeulou P (2013) Preliminary appraisal of wave power prospects in Lebanon. Renew Energy 53:165–173

    Article  Google Scholar 

  • Balis D et al (2006) Optical characteristics of desert dust over the East Mediterranean during summer: a case study. Ann Geophys 24:807–821

    Article  Google Scholar 

  • Barbariol F, Benetazzo A, Carniel S, Sclavo M (2013) Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew Energy 60:462–471

    Article  Google Scholar 

  • Belibassakis K, Athanassoulis G (2014) Gerostathis, directional wave spectrum transformation in the presence of strong depth and current inhomogeneities by means of coupled-mode model. Ocean Eng 87:84–96

    Article  Google Scholar 

  • Bidlot J, Janssen P, Abdalla S, Hersbach H (2007) A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509. ECMWF, Reading, United Kingdom, 27pp. available online at: http://www.ecmwf.int/publications/

  • Bidlot JR (2012) Present status of wave forecasting at ECMWF. Proceedings from the ECMWF Workshop on Ocean Waves, 25–27 June 2012. ECMWF, Reading, United Kingdom

  • Bidlot JR (2015) Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, MSC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, CNR-AM, METNO, SHN-SM January 2014 to December 2014 European Centre for Medium-range Weather Forecasts

  • Bolaños-Sanchez R, Sanchez-Arcilla A, Cateura J (2007) Evaluation of two atmospheric models for wind–wave modelling in the NW Mediterranean. J Mar Syst 65(1–4):336–353

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, edited by N. Heaps, 208 pp., American Geophysical Union

  • Brito-Melo A, Huckerby J (Eds.) (2010) Annual report 2010: implementing agreement on ocean energy systems. OES-IA

  • Brown JM, Davies AG (2009) Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont Shelf Res 29:1502–1514

    Article  Google Scholar 

  • Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry, satellite altimetry and Earth sciences, L.L. Fu and A. Cazenave Ed., Academic Press

  • Chiu F, Huang W, Tiao W (2013) The spatial and temporal characteristics of the wave energy resources around Taiwan. Renew Energy 52:218–221

    Article  Google Scholar 

  • Correia P, Lozano S, Chavez R, Loureiro Y, Cantero E, Benito P, Sanz Rodrigo J (2013) Wind Characterization at the Alaiz – Las Balsas experimental wind farm using high-resolution simulations with mesoscale models. Development of a “low cost” methodology that address promoters needs. EWEA-13 proceedings, Vienna, February 2013

  • Defne Z, Haas K, Fritz H (2009) Wave energy potential along the Atlantic coast of the southeastern USA. Renew Energy 34:2197–2205

    Article  Google Scholar 

  • Dobricic S, Pinardi N (2008) An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22:89–105

    Article  Google Scholar 

  • Dykes JD, Wang DW, Book JW (2009) An evaluation of a high-resolution operational wave forecasting system in the Adriatic Sea. J Mar Syst 78(suppl 1):S255–S271

    Article  Google Scholar 

  • Emmanouil G, Galanis G, Kallos G (2012) Combination of statistical Kalman filters and data assimilation for improving ocean waves analysis and forecasting. Ocean Model 59–60:11–23

    Article  Google Scholar 

  • Falnes J (2007) A review of wave-energy extraction. Mar Struct 20:185–201

    Article  Google Scholar 

  • Galanis G, Emmanouil G, Kallos G, Chu PC (2009) A new methodology for the extension of the impact in sea wave assimilation systems. Ocean Dyn 59(3):523–535

    Article  Google Scholar 

  • Galanis G, Chu PC, Kallos G (2011) Statistical post processes for the improvement of the results of numerical wave prediction models. A combination of Kolmogorov-Zurbenko and Kalman filters. J Oper Oceanogr 4(1):23–31

    Google Scholar 

  • Gonçalves M, Martinho P, Soares CG (2014) Wave energy conditions in the western French coast. Renew Energy 62:155–163

    Article  Google Scholar 

  • Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44:296–304

    Article  Google Scholar 

  • Hashemi MR, Neill (2014) The role of tides in shelf-scale simulations of the wave energy Resource. Renew Energy 69:300–310

    Article  Google Scholar 

  • Haus BK (2007) Surface current effects on the fetch limited growth of wave energy. J Geophys Res 112(CO3003):15

    Google Scholar 

  • Hemer M, Griffin D (2010) The wave energy resource along Australia’s southern margin. J Renew Sustain Energy 2:15. doi:10.1063/1.3464753

    Article  Google Scholar 

  • Hedges TS (1987) Combinations of waves and currents: an introduction. Proc Inst Civ Eng 82(Part I):567–585

    Article  Google Scholar 

  • Huang NE, Chen DT, Tung CC, Smith JR (1972) Interactions between steady non-uniform currents and gravity waves with applications for current measurements. J Phys Ocenogr 2:420–431

    Article  Google Scholar 

  • Henfridsson U, Neimane V, Strand K, Kapper R, Bernhoff H, Danielsson O, Leijon M, Sundberg J, Thorburn K, Ericsson K, Bergman K (2007) Wave energy potential in the Baltic Sea and the Danish Part of the North Sea, with reflections on the Skagerrak. Renew Energy 32:2069–2084

    Article  Google Scholar 

  • Hughes M, Heap A (2010) National-scale wave energy resource assessment for Australia. Renew Energy 35(8):1783–1791

    Article  Google Scholar 

  • Iglesias G, Carballo R (2009) Wave energy resource along the Death Coat (Spain). Renew Energy 34:1963–1975

    Article  Google Scholar 

  • Iglesias G, Lopez M, Carballo R, Castro A, Fraguela JA, Frigaard P (2009) Wave energy potential in Galicia (NW Spain). Renew Energy 34:2323–2333

    Article  Google Scholar 

  • Iglesias G, Carballo R (2010) Wave energy resource in the Estaca de Bares area (Spain). Renew Energy 35:1574–1584

    Article  Google Scholar 

  • Irigoyen U, Cantero E, Correia P, Frías L, Loureiro Y, Lozano S, Pascal E, Sanz Rodrigo J (2011) Navarre virtual wind series: physical mesoscale downscaling wind WAsP. Methodology and validation. EWEC-11 European Wind Energy Conference, Brussels, Belgium, March 2011

  • Janeiro J, Martins F, Relvas P (2012) Towards the development of an operational tool for oil spills management in the algarve coast. J Coast Conserv 16(4):449–460

    Article  Google Scholar 

  • Janssen P (2000) ECMWF wave modeling and satellite altimeter wave data. In D. Halpern (Ed.), Satellites, Oceanogr Soc, pp. 35–36, Elsevier

  • Janssen P (2004) The interaction of ocean waves and wind. University Press, Cambridge, 300pp

    Book  Google Scholar 

  • Jonsson IG (1990) Wave–current interactions. In: Le Mehaute B, Hanes DM (eds) The sea, chap 3, vol 9, part A. Wiley, New York

    Google Scholar 

  • JoãoTeles M, Pires-Silva AA, Benoit M (2013) Numerical modelling of wave current interactions at a local scale. Ocean Model

  • Kallos G (1997) The regional weather forecasting system SKIRON. Proceedings, Symposium on Regional Weather Prediction on Parallel Computer Environments, 15–17 October 1997, Athens, Greece, 9 pp

  • Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2005) Trans-Atlantic Saharan dust transport: Model simulation and results. J Geophys Res (111)

  • Komen G, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1994) Dynamics and modelling of ocean waves. Cambridge University Press

  • Korres G, Lascaratos A, Hatziapostolou E, Katsafados P (2002) Towards an ocean forecasting system for the Aegean sea. Glob Atmos Ocean Syst 8(2–3):191–218

    Article  Google Scholar 

  • Lenee-Bluhm P, Paasch R, Özkan-Haller T (2011) Characterizing the wave energy resource of the US Pacific Northwest. Renew Energy 36(8):2106–2119

    Article  Google Scholar 

  • Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G (2008) Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J Wind Eng Ind Aerodyn 96:2348–2362

    Article  Google Scholar 

  • Magnusson L, Thorpe A, Bonavita M, Lang S, McNally T, Wedi N (2013) Evaluation of forecasts for hurricane Sandy, Technical Memorandum, No. 699, ECMWF

  • Mellor GL (2003) Users guide for a three-dimensional, primitive equation, numerical ocean model. POM

  • Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Mellor GL (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38:2587–2596

    Article  Google Scholar 

  • Milena M, Poulain P-M, Zodiatis G, Gertman I (2012) On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res I 65:46–58

    Article  Google Scholar 

  • Morim J, Cartwright N, Etemad-Shahidi A, Strauss D, Hemer M (2014) A review of wave energy estimates for nearshore shelf waters off Australia. Int J Mar Energy 7:57–70

    Article  Google Scholar 

  • Nickovic S, Kallos G, Papadopoulos A, Kakaliagou O (2001) A model for prediction of desert dust cycle in the atmosphere. J Geophys Res 106(D16):18113–18129

    Article  Google Scholar 

  • Papadopoulos A, Katsafados P, Kallos G (2001) Regional weather forecasting for marine application. Global Atmos Ocean Syst 8(2–3):219–237

    Google Scholar 

  • Papadopoulos A, Katsafados P (2009) Verification of operational weather forecasts from the POSEIDON system across the Eastern Mediterranean. Nat Hazards Earth Syst Sci 9:1299–1306

    Article  Google Scholar 

  • Peregrine D (1976) Interaction of water waves and currents. Adv Appl Mech 16:9–117

    Article  Google Scholar 

  • Pinardi N, Allen I, De Mey P, Korres G, Lascaratos A, Le Traon PY, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Ann Geophys 21(1):3–20

    Article  Google Scholar 

  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332

    Article  Google Scholar 

  • Pontes MT (1998) Assessing the European wave energy resource. Trans Am Meteorol Soc 120:226–231

    Google Scholar 

  • Radhakrishnan H, Moulitsas I, Hayes D, Zodiatis G, Georgiou G (2012) On improving the operational performance of the Cyprus Coastal Ocean Forecasting System. Geophys Res Abstr 14, EGU2012-13144-1

  • Radhakrishnan H, Moulitsas I, Hayes D, Zodiatis G, Georgiou G (2011) Development of a parallel code for the Cyprus Coastal Ocean Forecasting System, the future of operational oceanography 2011, Hamburg, Germany

  • Rusu CL, Soares G (2011) Modelling the wave–current interactions in an offshore basin using the SWAN model. Ocean Eng 38:63–76

    Article  Google Scholar 

  • Rusu L, Soares G (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196

    Article  Google Scholar 

  • Saruwatari A, Ingram D, Cradden L (2013) Wave–current interaction effects on marine energy converters. Ocean Eng 73:106–118

    Article  Google Scholar 

  • Soares CG, de Pablo H (2006) Experimental study of the transformation of wave spectra by a uniform current. Ocean Eng 33:293–310

    Article  Google Scholar 

  • Siegel S (1956) Non-parametric statistics for the behavioral sciences. McGraw, New York

    Google Scholar 

  • Spyrou C, Mitsakou C, Kallos G, Louka P, Vlastou G (2010) An improved limited area model for describing the dust cycle in the atmosphere. J Geophys Res: Atmos 115 (D17)

  • Stathopoulos C, Kaperoni A, Galanis G, Kallos G (2013) Wind power prediction based on numerical and statistical models. J Wind Energy Ind Aerodyn 112:25–38

    Article  Google Scholar 

  • Stopa J, Cheung K, Chen YL (2011) Assessment of wave energy resources in Hawaii. Renew Energy 36(2):554–567

    Article  Google Scholar 

  • Tonani M, Pinardi N, Adani N, Bonazzi A, Coppini G, De Dominicis M, Dobricic S, Drudi M, Fabbroni N, Fratianni C, Grandi A, Lyubartsev S, Oddo P, Pettenuzzo D, Pistoia J and Pujol I (2008) The Mediterranean Ocean forecasting system, coastal to global operational oceanography: achievements and challenges. Proceedings of the Fifth International Conference on EuroGOOS 20–22 May 2008, Exeter, UK

  • Varinou M, Kallos G, Kotroni V, Lagouvardos K (2000) The influence of the lateral boundaries and background concentrations on limited area photochemical model simulations. Int J Environ Pollut 14:354–363

    Article  Google Scholar 

  • Vicinanza D, Contestabile P, Ferrante V (2013) Wave energy potential in the north-west of Sardinia (Italy). Renew Energy 50:506–521

    Article  Google Scholar 

  • van Nieuwkoop JCC, Smith HCM, Smith GH, Johanning L (2013) Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements. Renew Energy 58:1–14

    Article  Google Scholar 

  • WAMDIG, The WAM-Development and Implementation Group, Hasselmann S, Hasselmann K, Bauer E, Bertotti L, Cardone CV, Ewing JA, Greenwood JA, Guillaume A, Janssen P, Komen G, Lionello P, Reistad M, Zambresky L (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810

    Article  Google Scholar 

  • Whitman GB (1974) Linear and non-linear waves. Wiley, New York, 636 p

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  • Zodiatis G, Lardner R, Georgiou G, Demirov E, Manzella G, Pinardi N (2003) An operational European global ocean observing system for the eastern Mediterranean Levantine basin: the Cyprus coastal ocean forecasting and observing system. Mar Technol Soc J 37(3):115–123

    Article  Google Scholar 

  • Zodiatis G, Hayes D. R, Lardner R, Georgiou G. (2008) Sub-regional forecasting and observing system in the Eastern Mediterranean Levantine Basin: the Cyprus Coastal Ocean Forecasting and Observing System (CYCOFOS), CIESM Monographs no. 34 (F. Briand Editor), ISSN 1726–5886, 101–106

  • Zodiatis G, Galanis G, Nikolaidis A, Kalogeri C, Hayes D, Georgiou G, Chu PC, Kallos G (2014) Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study renewable energy. Renew Energy 69:311–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zodiatis.

Additional information

Responsible Editor: Pierre De Mey

This article is part of the Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zodiatis, G., Galanis, G., Kallos, G. et al. The impact of sea surface currents in wave power potential modeling. Ocean Dynamics 65, 1547–1565 (2015). https://doi.org/10.1007/s10236-015-0880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0880-4

Keywords

Navigation