Skip to main content

Advertisement

Log in

Cell traction force and measurement methods

  • Review
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cell traction forces (CTFs) are crucial to many biological processes such as inflammation, wound healing, angiogenesis, and metastasis. CTFs are generated by actomyosin interactions and actin polymerization and regulated by intracellular proteins such as alpha-smooth muscle actin (α-SMA) and soluble factors such as transforming growth factor-β (TGF-β). Once transmitted to the extracellular matrix (ECM) through stress fibers via focal adhesions, which are assemblies of ECM proteins, transmembrane receptors, and cytoplasmic structural and signaling proteins (e.g., integrins), CTFs direct many cellular functions, including cell migration, ECM organization, and mechanical signal generation. Various methods have been developed over the years to measure CTFs of both populations of cells and of single cells. At present, cell traction force microscopy (CTFM) is among the most efficient and reliable method for determining CTF field of an entire cell spreading on a two-dimensional (2D) substrate surface. There are currently three CTFM methods, each of which is unique in both how displacement field is extracted from images and how CTFs are subsequently estimated. A detailed review and comparison of these methods are presented. Future research should improve CTFM methods such that they can automatically track dynamic CTFs, thereby providing new insights into cell motility in response to altered biological conditions. In addition, research effort should be devoted to developing novel experimental and theoretical methods for determining CTFs in three-dimensional (3D) matrix, which better reflects physiological conditions than 2D substrate used in current CTFM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3):1274–1278

    Article  Google Scholar 

  • Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888

    Article  Google Scholar 

  • Bereiter-Hahn J (2005) Mechanics of crawling cells. Med Eng Phys 27(9):743–753

    Article  Google Scholar 

  • Bogatkevich GS, Tourkina E, Abrams CS, Harley RA, Silver RM, Ludwicka-Bradley A (2003) Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Am J Physiol Lung Cell Mol Physiol 285(2):L334–L343

    Google Scholar 

  • Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288(6):L1146–L1153

    Article  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518

    Article  Google Scholar 

  • Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454

    Article  Google Scholar 

  • Burton K, Park JH, Taylor DL (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10(11):3745–3769

    Google Scholar 

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Google Scholar 

  • Campbell BH, Clark WW, Wang JH (2003) A multi-station culture force monitor system to study cellular contractility. J Biomech 36(1):137–140

    Article  Google Scholar 

  • Campbell BH, Agarwal C, Wang JH (2004) TGF-beta1, TGF-beta3, and PGE(2) regulate contraction of human patellar tendon fibroblasts. Biomech Model Mechanobiol 2(4): 239–245

    Article  Google Scholar 

  • Chaponnier C, Goethals M, Janmey PA, Gabbiani F, Gabbiani G, Vandekerckhove J (1995) The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol 130(4):887–895

    Article  Google Scholar 

  • Chen J, Li H, SundarRaj N, Wang JH (2006) Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil Cytoskeleton (in press)

  • Clement S, Hinz B, Dugina V, Gabbiani G, Chaponnier C (2005) The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J Cell Sci 118(Pt 7):1395–1404

    Article  Google Scholar 

  • Delvoye P, Wiliquet P, Leveque JL, Nusgens BV, Lapiere CM (1991) Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J Invest Dermatol 97(5):898–902

    Article  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111

    Article  Google Scholar 

  • Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G (2001) Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 114(Pt 18):3285–3296

    Google Scholar 

  • Ehrlich HP (1988) The role of connective tissue matrix in wound healing. Prog Clin Biol Res 266:243–258

    Google Scholar 

  • Elson EL, Felder SF, Jay PY, Kolodney MS, Pasternak C (1999) Forces in cell locomotion. Biochem Soc Symp 65: 299–314

    Google Scholar 

  • Evans RA, Tian YC, Steadman R, Phillips AO (2003) TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation- the role of Smad proteins. Exp Cell Res 282(2):90–100

    Article  Google Scholar 

  • Ferrenq I, Tranqui L, Vailhe B, Gumery PY, Tracqui P (1997) Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta Biotheor 45(3–4):267–293

    Article  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  Google Scholar 

  • Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118

    Article  Google Scholar 

  • Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705

    Article  Google Scholar 

  • Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13(5):584–592

    Article  Google Scholar 

  • Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268

    Article  Google Scholar 

  • Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404

    Article  Google Scholar 

  • Hadamard J (1923) Lectures on the cauchy problem in linear partial differential equations. Yale University Press

  • Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251

    Article  Google Scholar 

  • Hartshorne DJ, Ito M, Erdodi F (1998) Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 19(4):325–341

    Article  Google Scholar 

  • Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5(1):48– 55

    Article  Google Scholar 

  • Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    Google Scholar 

  • Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14(6):2508– 2519

    Article  Google Scholar 

  • Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang XF, Rich JN (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3(6):737–745

    Google Scholar 

  • Ingber DE (2003) Mechanosensation through integrins: cells act locally but think globally. Proc Natl Acad Sci USA 100(4):1472–1474

    Article  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  Google Scholar 

  • Kawai-Kowase K, Sato H, Oyama Y, Kanai H, Sato M, Doi H, Kurabayashi M (2004) Basic fibroblast growth factor antagonizes transforming growth factor-beta1-induced smooth muscle gene expression through extracellular signal-regulated kinase 1/2 signaling pathway activation. Arterioscler Thromb Vasc Biol 24(8):1384–1390

    Article  Google Scholar 

  • Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, Sugiura H, Kamio K, Rennard SI (2006) Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun 339(1):290–295

    Article  Google Scholar 

  • Kolega J, Janson LW, Taylor DL (1991) The role of solation- contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol 114(5):993–1003

    Article  Google Scholar 

  • Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ, Moore BB (2003) Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 29(5):537–544

    Article  Google Scholar 

  • Kong HJ, Polte TR, Alsberg E, Mooney DJ (2005) FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci USA 102(12):4300–4305

    Article  Google Scholar 

  • Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, Pallua N, Dooley S (2005) Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 280(22):21570–21576

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon, Oxford

    Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. Faseb J 18(7):816–827

    Article  Google Scholar 

  • Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6 Pt 2):1957–1964

    Article  Google Scholar 

  • Li S, Guan JL, Chien S (2005) Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng 7:105–150

    Article  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  • Marganski WA, Dembo M, Wang YL (2003) Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow. Meth Enzymol 361:197–211

    Google Scholar 

  • Moon AG, Tranquillo RT (1993) Fibroblast–populated collagen microsphere assay of cell traction force .1. Continuum model. Aiche J 39(1):163–177

    Article  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114(Pt 24):4359–4369

    Google Scholar 

  • Munevar S, Wang Y, Dembo M (2001a) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4):1744–1757

    Google Scholar 

  • Munevar S, Wang YL, Dembo M (2001b) Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell 12(12):3947–3954

    Google Scholar 

  • Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665

    Article  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    Article  Google Scholar 

  • Rottner K, Hall A, Small JV (1999) Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9(12):640–648

    Article  Google Scholar 

  • du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395

    Article  Google Scholar 

  • Roy SG, Nozaki Y, Phan SH (2001) Regulation of alpha-smooth muscle actin gene expression in myofibroblast differentiation from rat lung fibroblasts. Int J Biochem Cell Biol 33(7):723–734

    Article  Google Scholar 

  • Sanger JW, Sanger JM, Jockusch BM (1983) Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol 96(4):961–969

    Article  Google Scholar 

  • Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394

    Article  Google Scholar 

  • Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250(2):273– 283

    Article  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142(3):873–881

    Article  Google Scholar 

  • Skalli O, Gabbiani F, Gabbiani G (1990) Action of general and alpha-smooth muscle-specific actin antibody microinjection on stress fibers of cultured smooth muscle cells. Exp Cell Res 187(1):119–125

    Article  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (1993) Image processing, analysis and machine vision. vol xix Chapman & Hall, London, p 555

    Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489

    Article  Google Scholar 

  • Tolic-Norrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38(7):1405– 1412

    Article  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  Google Scholar 

  • Wang YL, Pelham RJ Jr (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496

    Article  Google Scholar 

  • Wang HB, Dembo M, Hanks SK, Wang Y (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98(20):11295–11300

    Article  Google Scholar 

  • Wang J, Zohar R, McCulloch CA (2006) Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res 312(3):205–214

    Article  Google Scholar 

  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1(3):136–143

    Article  Google Scholar 

  • Yang Z, Lin JS, Chen J, Wang JH (2006) Determining substrate displacement and cell traction fields-a new approach. J Theor Biol 242:607–616

    Article  MathSciNet  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    Article  Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583– 3590

    Google Scholar 

  • Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu JZ (2005) The finite element method: its basis and fundamentals. Butterworth- Heinemann

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H-C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.HC., Lin, JS. Cell traction force and measurement methods. Biomech Model Mechanobiol 6, 361–371 (2007). https://doi.org/10.1007/s10237-006-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0068-4

Keywords

Navigation