Skip to main content

Advertisement

Log in

Regulation of immature cartilage growth by IGF-I, TGF-β1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cartilage growth may involve alterations in the balance between the swelling tendency of proteoglycans and the restraining function of the collagen network. Growth factors, including IGF-I, TGF-β1, BMP-7, and PDGF-AB, regulate chondrocyte metabolism and, consequently, may regulate cartilage growth. Immature bovine articular cartilage explants from the superficial and middle zones were incubated for 13 days in basal medium or medium supplemented with serum, IGF-I, TGF-β1, BMP-7, or PDGF-AB. Variations in tissue size, accumulation of proteoglycan and collagen, and tensile properties were assessed. The inclusion of serum, IGF-I, or BMP-7 resulted in expansive tissue growth, stimulation of proteoglycan deposition but not of collagen, and a diminution of tensile integrity. The regulation of cartilage metabolism by TGF-β1 resulted in tissue homeostasis, with maintenance of size, composition, and function. Incubation in basal medium or with PDGF-AB resulted in small volumetric and compositional changes, but a marked decrease in tensile integrity. These results demonstrate that the phenotype of cartilage growth, and the associated balance between proteoglycan content and integrity of the collagen network, is regulated differentially by certain growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211–222

    Google Scholar 

  • Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage: I. influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 4:379–92

    Google Scholar 

  • Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE (2000) Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem 48:1493–502

    Google Scholar 

  • Ataliotis P (2000) Platelet-derived growth factor A modulates limb chondrogenesis both in vivo and in vitro. Mech Dev 94:13–4

    Google Scholar 

  • Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB (1993) TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol 158:414–29

    Google Scholar 

  • Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43:2202–210

    Google Scholar 

  • Barone-Varelas J, Schnitzer TJ, Meng Q, Otten L, Thonar E (1991) Age-related differences in the metabolism of proteoglycans in bovine articular cartilage explants maintained in the presence of insulin-like growth factor-1. Connect Tissue Res 26:101–20

    Google Scholar 

  • Basser PJ, Schneiderman R, Bank RA, Wachtel E, Maroudas A (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch Biochem Biophys 351:207–19

    Google Scholar 

  • Bauer EA, Cooper TW, Huang JS, Altman J, Deuel TF (1985) Stimulation of in vitro human skin collagenase expression by platelet-derived growth factor. Proc Natl Acad Sci USA 82:4132–136

    Google Scholar 

  • Benninghoff A (1925) Form und bau der gelenkknorpel in ihren beziehungen zur funktion. Zweiter teil: der aufbau des gelenkknorpels in seinen beziehungen zur funktion. Z Zellforsch 2:783–62

    Google Scholar 

  • Bosmann HB (1968) Cellular control of macromolecular synthesis: rates of synthesis of extracellular macromolecules during and after depletion by papain. Proc R Soc Lond B 169:399–25

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1997) Articular cartilage. Part I: tissue design and chondrocyte-matrix interactions. J Bone Joint Surg Am 79-A:600–11

    Google Scholar 

  • Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117:179–92

    Google Scholar 

  • Chambers MG, Bayliss MT, Mason RM (1997) Chondrocyte cytokine and growth factor expression in murine osteoarthritis. Osteoarthritis Cartilage 5:301–08

    Google Scholar 

  • Chen AC, Temple MM, Ng DM, DeGroot J, Verzijl N, TeKoppele JM, Sah RL (2002) Induction of advanced glycation endproducts alters tensile properties of articular cartilage. Arthritis Rheum 46:3212–217

    Google Scholar 

  • Chubinskaya S, Merrihew C, Cs-Szabo G, Mollenhauer J, McCartney J, Rueger DC, Kuettner KE (2000) Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 48:239–50

    Google Scholar 

  • Chubinskaya S, Kumar B, Merrihew C, Heretis K, Rueger DC, Kuettner KE (2002) Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). Biochim Biophys Acta 1588:126–34

    Google Scholar 

  • Clemmons DR, Van Wyk JJ (1984) Factors controlling blood concentration of somatomedin C. Clin Endocrinol Metab 13:113–43

    Google Scholar 

  • Cohen B, Chorney GS, Phillips DP, Dick HM, Buckwalter JA, Ratcliffe A, Mow VC (1992) The microstructural tensile properties and biochemical composition of the bovine distal femoral growth plate. J Orthop Res 10:263–75

    Google Scholar 

  • Cole DE, Evrovski J (1997) Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. J Chromatogr A 789:221–32

    Google Scholar 

  • Copray JC, Jansen HW, Duterloo HS (1983) Growth of the mandibular condylar cartilage of the rat in serum-free organ culture. Arch Oral Biol 28:967–74

    Google Scholar 

  • Copray JC, Jansen HW, Duterloo HS (1986) Growth and growth pressure of mandibular condylar and some primary cartilages of the rat in vitro. Am J Orthod Dentofacial Orthop 90:19–8

    Google Scholar 

  • Cowin SC (2004) Tissue growth and remodeling. Annu Rev Biomed Eng 6:77–07

    Google Scholar 

  • DiMicco MA, Waters SN, Akeson WH, Sah RL (2002) Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage 10:218–25

    Google Scholar 

  • Eisenberg SR, Grodzinsky AJ (1988) Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks. Physicochem Hydrodyn 10:517–39

    Google Scholar 

  • Ellingsworth LR, Brennan JE, Fok K, Rosen DM, Bentz H, Piez KA, Seyedin SM (1986) Antibodies to the N-terminal portion of cartilage-inducing factor A and transforming growth factor beta. Immunohistochemical localization and association with differentiating cells. J Biol Chem 261:12362–2367

    Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–77

    Google Scholar 

  • Fitton-Jackson S (1970) Environmental control of macromolecular synthesis in cartilage and bone: morphogenetic response to hyaluronidase. Proc R Soc Lond B 175:405–53

    Google Scholar 

  • Florini JR, Roberts SB (1980) Effect of rat age on blood levels of somatomedin-like growth factors. J Gerontol 35:23–0

    Google Scholar 

  • Fortier LA, Kornatowski MA, Mohammed HO, Jordan MT, O’Cain LC, Stevens WB (2005) Age-related changes in serum insulin-like growth factor-I, insulin-like growth factor-I binding protein-3 and articular cartilage structure in Thoroughbred horses. Equine Vet J 37:37–2

    Google Scholar 

  • Francis-West PH, Robertson KE, Ede DA, Rodriguez C, Izpisua- Belmonte JC, Houston B, Burt DW, Gribbin C, Brickell PM, Tickle C (1995) Expression of genes encoding bone morphogenetic proteins and sonic hedgehog in talpid (ta3) limb buds: their relationships in the signalling cascade involved in limb patterning. Dev Dyn 203:187–97

    Google Scholar 

  • Fukumura K, Matsunaga S, Yamamoto T, Nagamine T, Ishidou Y, Sakou T (1998) Immunolocalization of transforming growth factor-beta s and type I and type II receptors in rat articular cartilage. Anticancer Res 18:4189–193

    Google Scholar 

  • Garcia AM, Gray ML (1995) Dimensional growth and extracellular matrix accumulation by neonatal rat mandibular condyles in long-term culture. J Orthop Res 13:208–19

    Google Scholar 

  • Green RJ, Usui ML, Hart CE, Ammons WF, Narayanan AS (1997) Immunolocalization of platelet-derived growth factor A and B chains and PDGF-alpha and beta receptors in human gingival wounds. J Periodontal Res 32:209–14

    Google Scholar 

  • Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissue. CRC Crit Rev Bioeng 9:133–99

    Google Scholar 

  • Guerne PA, Lotz M (1991) Interleukin-6 and transforming growth factor-beta synergistically stimulate chondrosarcoma cell proliferation. J Cell Physiol 149:117–24

    Google Scholar 

  • Gunther M, Haubeck HD, van de Leur E, Blaser J, Bender S, Gutgemann I, Fischer DC, Tschesche H, Greiling H, Heinrich PC, Graeve L (1994) Transforming growth factor beta 1 regulates tissue inhibitor of metalloproteinases-1 expression in differentiated human articular chondrocytes. Arthritis Rheum 37:395–05

    Google Scholar 

  • Hashimoto R, Kihara I, Otani H (2002) Perinatal development of the rat hip joint with restrained fetal movement. Congenit Anom (Kyoto) 42:135–42

    Google Scholar 

  • Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 203:469–79

    Google Scholar 

  • Heine U, Munoz EF, Flanders KC, Ellingsworth LR, Lam HY, Thompson NL, Roberts AB, Sporn MB (1987) Role of transforming growth factor-beta in the development of the mouse embryo. J Cell Biol 105:2861–876

    Google Scholar 

  • Herbage D, Bouillet J, Bernengo J-C (1977) Biochemical and physicochemical characterization of pepsin-solubilized type-II collagen from bovine articular cartilage. Biochem J 161:303–12

    Google Scholar 

  • Hills RL, Belanger LM, Morris EA (2005) Bone morphogenetic protein 9 is a potent anabolic factor for juvenile bovine cartilage, but not adult cartilage. J Orthop Res 23:611–17

    Google Scholar 

  • Horner A, Bord S, Kemp P, Grainger D, Compston JE (1996) Distribution of platelet-derived growth factor (PDGF) A chain mRNA, protein, and PDGF-alpha receptor in rapidly forming human bone. Bone 19:353–62

    Google Scholar 

  • Horner A, Kemp P, Summers C, Bord S, Bishop NJ, Kelsall AW, Coleman N, Compston JE (1998) Expression and distribution of transforming growth factor-beta isoforms and their signaling receptors in growing human bone. Bone 23:95–02

    Google Scholar 

  • Hui W, Cawston T, Rowan AD (2003) Transforming growth factor beta 1 and insulin-like growth factor 1 block collagen degradation induced by oncostatin M in combination with tumour necrosis factor alpha from bovine cartilage. Ann Rheum Dis 62:172–74

    Google Scholar 

  • Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32:35–9

    Google Scholar 

  • Iqbal J, Dudhia J, Bird JL, Bayliss MT (2000) Age-related effects of TGF-beta on proteoglycan synthesis in equine articular cartilage. Biochem Biophys Res Commun 274:467–71

    Google Scholar 

  • Kempson GE (1982) Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis 41:508–11

    Google Scholar 

  • Kim YJ, Sah RLY, Doong JYH, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–76

    Google Scholar 

  • Klisch SM, Chen SS, Sah RL, Hoger A (2003) A growth mixture theory for cartilage with applications to growth-related experiments on cartilage explants. J Biomech Eng 125:169–79

    Google Scholar 

  • Koepp HE, Sampath KT, Kuettner KE, Homandberg GA (1999) Osteogenic protein-1 (OP-1) blocks cartilage damage caused by fibronectin fragments and promotes repair by enhancing proteoglycan synthesis. Inflamm Res 48:199–04

    Google Scholar 

  • Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–58

    Google Scholar 

  • Laufer E, Pizette S, Zou H, Orozco OE, Niswander L (1997) BMP expression in duck interdigital webbing: a reanalysis. Science 278:305

    Google Scholar 

  • Lietman SA, Yanagishita M, Sampath TK, Reddi AH (1997) Stimulation of proteoglycan synthesis in explants of porcine articular cartilage by recombinant osteogenic protein-1 (bone morphogenetic protein-7). J Bone Joint Surg Am 79:1132–137

    Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–2

    Google Scholar 

  • Loeser RF, Chubinskaya S, Pacione C, Im HJ (2005) Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis Rheum 52:3910–917

    Google Scholar 

  • Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–820

    Google Scholar 

  • Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH (1988) Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys 267:416–25

    Google Scholar 

  • Luyten FP, Yu YM, Yanagishita M, Vukicevic S, Hammonds RG, Reddi AH (1992) Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem 267:3691–695

    Google Scholar 

  • Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–09

    Google Scholar 

  • Maroudas A (1979) Physico-chemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, Tunbridge Wells

  • Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 36:399–06

    Google Scholar 

  • Masuda K, Shirota H, Thonar EJ-MA (1994) Quantification of 35S-labeled proteoglycans complexed to alcian blue by rapid filtration in multiwell plates. Anal Biochem 217:167–75

    Google Scholar 

  • McGowan KB, Kurtis MS, Lottman LM, Watson D, Sah RL (2002) Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258. Osteoarthritis Cartilage 10:580–87

    Google Scholar 

  • McQuillan DJ, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC (1986) Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J 240:423–30

    Google Scholar 

  • Morales TI, Hascall VC (1991) Transforming growth factor-β1 stimulates synthesis of proteoglycan aggregates in calf articular organ cultures. Arch Biochem Biophys 286:99–06

    Google Scholar 

  • Morales TI, Roberts AB (1988) Transforming growth factor-β regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem 263:12828–2831

    Google Scholar 

  • Morales TI, Joyce ME, Soble ME, Danielpour D, Roberts AB (1991) Transforming growth factor-β in calf articular cartilage organ cultures: synthesis and distribution. Arch Biochem Biophys 288:397–05

    Google Scholar 

  • Moroco JR, Hinton R, Buschang P, Milam SB, Iacopino AM (1997) Type II collagen and TGF-betas in developing and aging porcine mandibular condylar cartilage: immunohistochemical studies. Cell Tissue Res 289:119–24

    Google Scholar 

  • Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Raven Press, New York

  • Muehleman C, Kuettner KE, Rueger DC, Ten Dijke P, Chubinskaya S (2002) Immunohistochemical localization of osteogenetic protein (OP-1) and its receptors in rabbit articular cartilage. J Histochem Cytochem 50:1341–350

    Google Scholar 

  • Nakano T, Sim JS (1995) A study of the chemical composition of the proximal tibial articular cartilage and growth plate of broiler chickens. Poult Sci 74:538–50

    Google Scholar 

  • Nishida Y, Knudson CB, Kuettner KE, Knudson W (2000) Osteogenic protein-1 promotes the synthesis and retention of extracellualr matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthritis Cartilage 8:127–36

    Google Scholar 

  • Orr-Urtreger A, Lonai P (1992) Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development 115:1045–058

    Google Scholar 

  • Pal S, Tang L-H, Choi H, Habermann E, Rosenberg L, Roughley P, Poole AR (1981) Structural changes during development in bovine fetal epiphyseal cartilage. Collagen Rel Res 1:151–76

    Google Scholar 

  • Ralphs JR, Wylie L, Hill DJ (1990) Distribution of insulin-like growth factor peptides in the developing chick embryo. Development 109:51–8

    Google Scholar 

  • Rayan V, Hardingham T (1994) The recover of articular cartilage in explant culture from interleukin-1α: effects on proteoglycan synthesis and degradation. Matrix Biol 14:263–71

    Google Scholar 

  • Ren P, Rowland GN 3rd, Halper J (1997) Expression of growth factors in chicken growth plate with special reference to tibial dyschondroplasia. J Comp Pathol 116:303–20

    Google Scholar 

  • Roberts AB, Flanders KC, Kondaiah P, Thompson NL, Van Obberghen-Schilling E, Wakefield L, Rossi P, de Crombrugghe B, Heine U, Sporn MB (1988) Transforming growth factor beta: biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. Recent Prog Horm Res 44:157–97

    Google Scholar 

  • Sah RL, Doong JYH, Grodzinsky AJ, Plaas AHK, Sandy JD (1991) Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch Biochem Biophys 286:20–9

    Google Scholar 

  • Sah RL, Chen AC, Grodzinsky AJ, Trippel SB (1994) Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308:137–47

    Google Scholar 

  • Sah RL, Trippel SB, Grodzinsky AJ (1996) Differential effects of serum, insulin-like growth factor-I, and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. J Orthop Res 14:44–2

    Google Scholar 

  • Schafer SJ, Luyten FP, Yanagishita M, Reddi AH (1993) Proteoglycan metabolism is age related and modulated by isoforms of platelet-derived growth factor in bovine articular cartilage explant cultures. Arch Biochem Biophys 302:431–38

    Google Scholar 

  • Schinagl RM (1997) Depth-dependent mechanical properties and chondrocyte adhesion to articular cartilage. University of California, San Diego

    Google Scholar 

  • Schmidt TA, Schumacher BL, Han EH, Klein TJ, Voegtline MS, Sah RL (2005) Chemo-mechanical coupling in articular cartilage: IL-1a and TGF-β1 regulate chondrocyte synthesis and secretion of proteoglycan 4. In: Aaron RK, Bolander ME (ed) Physical regulation of skeletal repair. American Academy of Orthopaedic Surgeons, Chicago

  • Schneiderman R, Rosenberg N, Hiss J, Lee P, Liu F, Hintz RL, Maroudas A (1995) Concentration and size distribution of insulin-like growth factor-I in human normal and osteoarthritic synovial fluid and cartilage. Arch Biochem Biophys 324:173–88

    Google Scholar 

  • Soder S, Hakimiyan A, Rueger DC, Kuettner KE, Aigner T, Chubinskaya S (2005) Antisense inhibition of osteogenic protein 1 disturbs human articular cartilage integrity. Arthritis Rheum 52:468–78

    Google Scholar 

  • Soma Y, Dvonch V, Grotendorst GR (1992) Platelet-derived growth factor AA homodimer is the predominant isoform in human platelets and acute human wound fluid. Faseb J 6:2996–001

    Google Scholar 

  • Stern BD, Mechanic GL, Glimcher MJ (1963) The resorption of bone collagen in tissue culture. Biochem Biophys Res Commun 13:137–43

    Google Scholar 

  • Su S, Dehnade F, Zafarullah M (1996) Regulation of tissue inhibitor of metalloproteinases-3 gene expression by transforming growth factor-beta and dexamethasone in bovine and human articular chondrocytes. DNA Cell Biol 15:1039–048

    Google Scholar 

  • Taber LA (2001) Biomechanics of cardiovascular development. Annu Rev Biomed Eng 3:1–5

    Google Scholar 

  • Tesch GH, Handley CJ, Cornell HJ, Herington AC (1992) Effects of free and bound insulin-like growth factors on proteoglycan metabolism in articular cartilage explants. J Orthop Res 10:14–2

    Google Scholar 

  • Thonar EJ-M, Sweet MBE (1981) Maturation-related changes in proteoglycans of fetal articular cartilage. Arch Biochem Biophys 208:535–47

    Google Scholar 

  • Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol 43S:129–32

    Google Scholar 

  • Venn MF, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–29

    Google Scholar 

  • Wei X, Messner K (1998) Age- and injury-dependent concentrations of transforming growth factor-beta 1 and proteoglycan fragments in rabbit knee joint fluid. Osteoarthritis Cartilage 6:10–8

    Google Scholar 

  • Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 19:1113–121

    Google Scholar 

  • Williamson AK, Chen AC, Masuda K, Thonar EJ-MA, Sah RL (2003a) Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res 21:872–80

    Google Scholar 

  • Williamson AK, Masuda K, Thonar EJ-MA, Sah RL (2003b) Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties. Tissue Eng 9:625–34

    Google Scholar 

  • Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C (1996) Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res 14:927–36

    Google Scholar 

  • Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–47

    Google Scholar 

  • Wong M, Ponticiello M, Kovanen V, Jurvelin JS (2000) Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech 33:1049–054

    Google Scholar 

  • Woo SL-Y, Akeson WH, Jemmott GF (1976) Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension. J Biomech 9:785–91

    Google Scholar 

  • Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335:1363–367

    Google Scholar 

  • Yamamoto H, Sohmiya M, Oka N, Kato Y (1991) Effects of aging and sex on plasma insulin-like growth factor I (IGF-I) levels in normal adults. Acta Endocrinol (Copenh) 124:497–00

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanbaeva, A., Masuda, K., Thonar, E.JM.A. et al. Regulation of immature cartilage growth by IGF-I, TGF-β1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol 7, 263–276 (2008). https://doi.org/10.1007/s10237-007-0096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-007-0096-8

Keywords

Navigation