Skip to main content

Advertisement

Log in

A nonlinear finite element model of cartilage growth

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The long range objective of this work is to develop a cartilage growth finite element model (CGFEM), based on the theories of growing mixtures that has the capability to depict the evolution of the anisotropic and inhomogeneous mechanical properties, residual stresses, and nonhomogeneities that are attained by native adult cartilage. The CGFEM developed here simulates isotropic in vitro growth of cartilage with and without mechanical stimulation. To accomplish this analysis a commercial finite element code (ABAQUS) is combined with an external program (MATLAB) to solve an incremental equilibrium boundary value problem representing one increment of growth. This procedure is repeated for as many increments as needed to simulate the desired growth protocol. A case study is presented utilizing a growth law dependent on the magnitude of the diffusive fluid velocity to simulate an in vitro dynamic confined compression loading protocol run for 2 weeks. The results include changes in tissue size and shape, nonhomogeneities that develop in the tissue, as well as the variation that occurs in the tissue constitutive behavior from growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29(10): 1331–

    Article  Google Scholar 

  • Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–4

    Article  Google Scholar 

  • Atkin RJ, Craine RE (1976) Continuum Theories of Mixtures: Basic Theory and Historical Development. Q J Mech Appl Math 29:209–44

    Article  MATH  MathSciNet  Google Scholar 

  • Beaupre GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling - theoretical development. J Orthop Res 8:651–61

    Article  Google Scholar 

  • Breward CJ, Byrne HM, Lewis CE (2003) A multiphase model describing vascular tumour growth. Bull Math Biol 65(4):609–0

    Article  Google Scholar 

  • Buckwalter JA, Mankin HJ (1997) Articular cartilage. Part I: tissue design and chondrocyte-matrix interactions. J Bone Joint Surg Am 79-A:600–1

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1998) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–2

    Article  Google Scholar 

  • Buschmann MD, Kim YJ, Wong M, Frank E, Hunziker EB, Grodzinsky AJ (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366:1–

    Article  Google Scholar 

  • Carter DR, Wong M (1988) Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 6(1):148–4

    Article  Google Scholar 

  • Chahine NO, Wang CC, Hung CT, Ateshian GA (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech 37:1251–261

    Article  Google Scholar 

  • Chen YC, Hoger A (2000) Constitutive functions for elastic materials in finite growth and deformation. J Elast 59:175–93

    Article  MATH  Google Scholar 

  • Chuong CJ, Fung YC (1986) On Residual Stresses in Arteries. ASME J Biomech Eng 120:382–88

    Google Scholar 

  • Cowin SC (1993) Bone stress adaptation models. J Biomech Eng 115:528–33

    Article  Google Scholar 

  • Cowin SC, Hegedus DM (1976) Bone remodeling I: A theory of adaptive elasticity. J Elasticity 6:313–25

    Article  MATH  MathSciNet  Google Scholar 

  • Curnier A, He QC, Zysset P (1995) Conewise linear elastic materials. J Elasticity 37:1–8

    Article  MATH  MathSciNet  Google Scholar 

  • Davisson TH, Sah RL, Ratcliffe AR (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8:807–16

    Article  Google Scholar 

  • DiCarlo A, Quiligotti S (2002) Growth and balance. Mech Res Commun 29:449–56

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–78

    Article  MATH  Google Scholar 

  • Ficklin T, Thomas G, Chen A, Sah R, Davol A, Klisch S (2006) Development of an experimental protocol to measure anisotropic material properties of bovine articular cartilage. 2006 Summer Bioengineering Conference, Amelia Island, Florida, ASME

  • Ganghoffer J-F, Haussy B (2005) Mechanical modeling of growth considering domain variation. Part 1: constitutive framework. Int J Solids Struct 42(15):4311–337

    Article  MATH  Google Scholar 

  • Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and growth. J Mech Phys Sol 52(7):1595–625

    Article  MATH  MathSciNet  Google Scholar 

  • Guilak F, Sah RL, Setton LA (1997) Physical regulation of cartilage metabolism. Basic orthopaedic biomechanics. Mow VC, Hayes WC (eds) Raven Press, New York 179–07

  • Hall AC, Urban JPG, Ellory JC (1988) Differential effects of steady and cyclic high hydrostatic pressures on protein and proteoglycan synthesis in cartilage. Trans Orthop Res Soc 13:71

    Google Scholar 

  • Huang Z (2004) The equilibrium equations and constitutive equations of the growing deformable body in the framework of continuum theory. Int J Non-Linear Mech 39(6):951–62

    Article  MATH  Google Scholar 

  • Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling in soft tissues. Math Model Meth Appl Sci 12(3):407–30

    Article  MATH  MathSciNet  Google Scholar 

  • Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–63

    Google Scholar 

  • Itskov MAN (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solids Struct 41:3833–848

    Article  MATH  MathSciNet  Google Scholar 

  • Kim YJ, Bonassar LJ, Grodzinsky AJ (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech 28:1055–066

    Article  Google Scholar 

  • Klisch SM (2006a) A bimodular theory for finite deformations: comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage. Biomech Model Mechanobiol 5:90–01

    Article  Google Scholar 

  • Klisch SM (2006b) Continuum models of growth with special emphasis on articular cartilage. Mechanics of Biological Tissue. Holzapfel GA, Ogden RW Springer, Berlin 119–33

  • Klisch SM, Hoger A (2003) Volumetric growth of thermoelastic materials and mixtures. Math Mech Solids 8:377–02

    Article  MATH  MathSciNet  Google Scholar 

  • Klisch SM, Lotz JC (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. J Biomech Eng 122:180–88

    Article  Google Scholar 

  • Klisch SM, Sah RL, Hoger A (2000) A growth mixture theory for cartilage. Mechanics in biology. Casey J, Bao G, ASME. AMB 242 & BED 46:229–42

    Google Scholar 

  • Klisch SM, Van Dyke T, Hoger A (2001) A theory of volumetric growth for compressible elastic materials. Math Mech Solids 6:551–5

    Article  MATH  Google Scholar 

  • Klisch SM, Chen SS, Sah RL, Hoger A (2003) A growth mixture theory for cartilage with applications to growth-related experiments on cartilage explants. J Biomech Eng 125:169–79

    Article  Google Scholar 

  • Klisch SM, Asanbaeva A, Sah RL, Davol A (2005a) Cartilage growth mixture model: finite strain theory, constitutive equations, and boundary-value problem solutions. International symposium on plasticity

  • Klisch SM, Sah RL, Hoger A (2005b) A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments. Biomech Model Mechanobiol 3(4):209–3

    Article  Google Scholar 

  • Klisch SM, Asanbaeva A, Sah RL, Davol A (2006) Theoretical and experimental study of articular cartilage growth. US national congress of theoretical and applied mechanics, Boulder

    Google Scholar 

  • Kuhl E, Steinmann P (2003) Mass- and volume-specific views on thermodynamics for open systems. Proc R Soc London 459A:2547–568

    Article  MATH  MathSciNet  Google Scholar 

  • Lai WM, Mow VC, Roth V (1981) Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J Biomech Eng 103:61–6

    Article  Google Scholar 

  • Lappa M (2005) A CFD level-set method for soft tissue growth: theory and fundamental equations. J Biomech 38(1):185–0

    Google Scholar 

  • Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39:4627–664

    Article  MATH  Google Scholar 

  • Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 36(5):399–06

    Article  Google Scholar 

  • Menzel A (2005) Modelling of anisotropic growth in biological tissues: a new approach and computational aspects. Biomech Model Mechanobiol 3(3):147–71

    Article  Google Scholar 

  • Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus. Basic orthopaedic biomechanics. Mow VC, Hayes WC Raven Press, New York pp 113–78

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment. J Biomech Eng 102:73–4

    Article  Google Scholar 

  • Nieminen MT, Toyras J, Rieppo J, Hakumaki JM, Silvennoinen J, Helminen HJ, Jurvelin JS (2004) Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 43:676–1

    Article  Google Scholar 

  • Nissi MJ, Toyras J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, Jurvelin JS, Nieminen HJ (2004) Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res in press

  • Pazzano D, Mercier KA, Moran JM, Fong SS, DiBiasio DD, Rulfs JX, Kohles SS, Bonassar LJ (2000) Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol Prog 16(5):893–

    Article  Google Scholar 

  • Preziosi L, Farina A (2002) On darcy’s law for growing porous media. Int J Non-Linear Mech 37:485–91

    Article  MATH  Google Scholar 

  • Quiligotti S (2002) On bulk growth mechanics of solid-fluid mixtures: kinematics and invariance requirements. Theor Appl Mech 28–9:277–88

    Article  MathSciNet  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–67

    Article  Google Scholar 

  • Sah RL, Kim YJ, Doong JH, Grodzinsky AJ, Plaas AHK, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–36

    Article  Google Scholar 

  • Schroder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–45

    Article  MathSciNet  Google Scholar 

  • Schroder J, Neff P, Balzani D (2005) A variational approach for materially stable anisotropic hyperelasticity. Int J Solids Struct 42:4352–371

    Article  MathSciNet  Google Scholar 

  • Simon BR (1992) Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev 45:191–18

    Article  Google Scholar 

  • Skalak R (1981) Growth as a finite displacement field. Proceedings of the IUTAM symposium on finite elasticity, Martinus Nijhoff, The Hague

    Google Scholar 

  • Skalak R, Zargaryan S, Jain RK, Netti PA, Hoger A (1996) Compatability and the genesis of residual stress by volumetric growth. J Math Biol 34:889–14

    MATH  Google Scholar 

  • Skalak R, Farrow DA, Hoger A (1997) Kinematics of surface growth. J Math Biol 35(8):869–07

    Article  MATH  MathSciNet  Google Scholar 

  • Smith GD, Knutsen G, Richardson JB (2005) A clincial review of cartilage repair techniques. J Bone Joint Surg 87B(4):445–49

    Google Scholar 

  • Soltz MA, Ateshian GA (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122:576–6

    Article  Google Scholar 

  • Taber L (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120:348–54

    Article  Google Scholar 

  • Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180:343–7

    Article  Google Scholar 

  • Volokh KY (2004) A simple phenomenological theory of tissue growth. Mech Chem Biosyst 1(2):147–60

    MATH  Google Scholar 

  • Wang CC, Chahine NO, Hung CT, Ateshian GA (2003) Optical determination of anisotropic material properties of bovine articular cartilage in compression. J Biomech 36(3):339–3

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1998) Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J Biomech 31:165–

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Davol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davol, A., Bingham, M.S., Sah, R.L. et al. A nonlinear finite element model of cartilage growth. Biomech Model Mechanobiol 7, 295–307 (2008). https://doi.org/10.1007/s10237-007-0098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-007-0098-6

Keywords

Navigation