Skip to main content
Log in

Models of cardiac electromechanics based on individual hearts imaging data

Image-based electromechanical models of the heart

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2011

Abstract

Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56: 411–421

    Article  Google Scholar 

  • Arts T, Reneman R, Veenstra P (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318

    Article  Google Scholar 

  • Ashikaga H, Coppola B, Hopenfeld B, Leifer E, McVeigh E, Omens J (2007) Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo. J Am Coll Cardiol 49: 909–916

    Article  Google Scholar 

  • Ashikaga H, Omens JH, Ingels NB, Covell JW (2004) Transmural mechanics at left ventricular epicardial pacing site. Am J Physiol Heart Circ Physiol 286: H2401–H2407

    Article  Google Scholar 

  • Balay S, Buschelman K, Eijkhout V, Cropp W, Kaushik D, Knepley M, McInnes LC, Smith B, Zhang H (2007) PETSc User manual, vol ANL-95/11-Revision 2.3.3. Argonne National Laboratory, Argonne

    Google Scholar 

  • Bovendeerd PHM, Arts T, Huyghe JM, van Campen DH, Reneman RS (1992) Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J Biomech 25: 1129–1140

    Article  Google Scholar 

  • Campbell S, Howard E, Aguado-Sierra J, Coppola B, Omens J, Mulligan L, McCulloch A, Kerckhoffs R (2009) Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics. Exp Phys 94: 541–552

    Article  Google Scholar 

  • Chen J, Song S-K, Liu W, McLean M, Allen S, Tan J, Wickline S, Yu X (2003) Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 285: H946–H954

    Google Scholar 

  • Cohen S, Hindmarsh C (1996) Cvode, a stiff/nonstiff Ode solver in C. Comput Phys 10: 138–143

    Google Scholar 

  • Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41: 899–912

    Google Scholar 

  • Feit TS (1979) Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 28: 143–166

    Article  Google Scholar 

  • Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MH, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2: 139–155

    Article  Google Scholar 

  • Greenstein J, Hinch R, Winslow R (2006) Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J 90: 77–91

    Article  Google Scholar 

  • Guccione J, Costa K, McCulloch A (1995) Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech 28: 1167–1177

    Article  Google Scholar 

  • Helm P, Beg MF, Miller M, Winslow R (2005) Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann NY Acad Sci 1047: 296–307

    Article  Google Scholar 

  • Helm P, Tseng H-J, Younes L, McVeigh E, Winslow R (2005) Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 54: 850–859

    Article  Google Scholar 

  • Helm P, Winslow R, McVeigh E (2004) DTMRI data sets. http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets

  • Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98: 125–132

    Article  Google Scholar 

  • Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 274: H1627–H1634

    Google Scholar 

  • Janz R, Grimm A (1972) Finite-element model for the mechanical behavior of the left ventricle: predictioni of deformation in the potassium-arrested rat heart. Circ Res 30: 244–252

    Google Scholar 

  • Kerckhoffs Roy, Neal Maxwell, Gu Quan, Bassingthwaighte James, Omens Jeff, McCulloch Andrew (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35: 1–18

    Article  Google Scholar 

  • Kerckhoffs RC, Bovendeerd PH, Kotte JC, Prinzen FW, Smits K, Arts T (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 31: 536–547

    Article  Google Scholar 

  • Kerckhoffs RCP, Healy SN, Usyk TP, McCulloch AD (2006) Computational methods for cardiac electromechanics. Proc IEEE 94: 769–783

    Article  Google Scholar 

  • Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Heart Circ Physiol 260: H1365–H1378

    Google Scholar 

  • Onate E, Rojek J, Taylor R, Zienkiewicz O (2004) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Meth Eng 59: 1473–1500

    Article  MathSciNet  MATH  Google Scholar 

  • Plank G, Zhou L, Greenstein JL, Cortassa S, Winslow RL, O’Rourke B, Trayanova NA (2008) From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Phil Trans R Soc A 366: 3381–3409

    Article  MathSciNet  Google Scholar 

  • Prassl AJ, Kickinger F, Ahammer H, Grau V, Schneider JE, Hofer E, Vigmond EJ, Trayanova NA, Plank G (2009) Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans Biomed Eng 56: 1318–1330

    Article  Google Scholar 

  • Provost J, Lee WN, Fujikura K, Konofagou EE (2010) Electromechanical wave imaging of normal and ischemic hearts in vivo. IEEE Trans Med Imaging 29: 625–635

    Article  Google Scholar 

  • Provost J, Gurev V, Konofagou EE, Trayanova NA (In Review) Electromechanical wave imaging for mapping of cardiac electrical activation: a simulation-experimental assessment of the methodology. Heart Rhythm

  • Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95: 2368–2390

    Article  Google Scholar 

  • Roberts DE, Scher AM (1982) Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res 50: 342–351

    Google Scholar 

  • Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275: H2308–H2318

    Google Scholar 

  • Spach MS, Barr RC (1975) Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog. Circ Res 37: 243–257

    Google Scholar 

  • Stevens C, Remme E, LeGrice I, Hunter P (2003) Ventricular mechanics in diastole: material parameter sensitivity. J Biomech 36: 737–748

    Article  Google Scholar 

  • Usyk T, Legrice I, McCulloch A (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4: 249–257

    Article  MATH  Google Scholar 

  • Vadakkumpadan F, Arevalo H, Prassl A, Chen J, Kickinger F, Plank G, Trayanov N (2009a) Image-based models of cardiac structure in health and disease WIREs. Syst Biol and Med. (in press)

  • Vadakkumpadan F, Rantner L, Tice B, Boyle P, Prassl A, Vigmond E, Plank G, Trayanova N (2009) Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J Electriocardiol 42: 157.e110–157.e151

    Google Scholar 

  • Vetter F, McCulloch A (2000) Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann Biomed Eng 28: 781–792

    Article  Google Scholar 

  • Vetter FJ, McCulloch AD (1998) Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol 69: 157–183

    Article  Google Scholar 

  • Wenk J, Jhun C-S, Zhang Z, Sun K, Burger M, Einstein D, Ratcliffe M, Guccione J, Guccione J, Kassab G, Ratcliffe M (2010). In vivo left ventricular geometry and boundary conditions. In: Computational cardiovascular mechanics. Springer, US, pp 3–21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viatcheslav Gurev.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10237-010-0283-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurev, V., Lee, T., Constantino, J. et al. Models of cardiac electromechanics based on individual hearts imaging data. Biomech Model Mechanobiol 10, 295–306 (2011). https://doi.org/10.1007/s10237-010-0235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0235-5

Keywords

Navigation