Skip to main content

Advertisement

Log in

Fluid–structure interaction simulations of patient-specific aortic dissection

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Credible computational fluid dynamic (CFD) simulations of aortic dissection are challenging, because the defining parallel flow channels—the true and the false lumen—are separated from each other by a more or less mobile dissection membrane, which is made up of a delaminated portion of the elastic aortic wall. We present a comprehensive numerical framework for CFD simulations of aortic dissection, which captures the complex interplay between physiologic deformation, flow, pressures, and time-averaged wall shear stress (TAWSS) in a patient-specific model. Our numerical model includes (1) two-way fluid–structure interaction (FSI) to describe the dynamic deformation of the vessel wall and dissection flap; (2) prestress and (3) external tissue support of the structural domain to avoid unphysiologic dilation of the aortic wall and stretching of the dissection flap; (4) tethering of the aorta by intercostal and lumbar arteries to restrict translatory motion of the aorta; and a (5) independently defined elastic modulus for the dissection flap and the outer vessel wall to account for their different material properties. The patient-specific aortic geometry is derived from computed tomography angiography (CTA). Three-dimensional phase contrast magnetic resonance imaging (4D flow MRI) and the patient’s blood pressure are used to inform physiologically realistic, patient-specific boundary conditions. Our simulations closely capture the cyclical deformation of the dissection membrane, with flow simulations in good agreement with 4D flow MRI. We demonstrate that decreasing flap stiffness from \({E}_{\hbox{flap}}= 800\) to \({E}_{\hbox{flap}}= 20\) kPa (a) increases the displacement of the dissection flap from 1.4 to 13.4 mm, (b) decreases the surface area of TAWSS by a factor of 2.3, (c) decreases the mean pressure difference between true lumen and false lumen by a factor of 0.63, and (d) decreases the true lumen flow rate by up to 20% in the abdominal aorta. We conclude that the mobility of the dissection flap substantially influences local hemodynamics and therefore needs to be accounted for in patient-specific simulations of aortic dissection. Further research to accurately measure flap stiffness and its local variations could help advance future CFD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alimohammadi M, Sherwood JM, Karimpour M, Agu O, Balabani S, Díaz-Zuccarini V (2015) Aortic dissection simulation models for clinical support: fluid-structure interaction versus rigid wall models. Biomed Eng online 14(1):34

    Google Scholar 

  • Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37

    MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Hsu M-Y, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen JG (2010) Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech Model Mechanobiol 9(4):481–498

    Google Scholar 

  • Berguer R, Parodi JC, Schlicht M, Khanafer K (2015) Experimental and clinical evidence supporting septectomy in the primary treatment of acute type B thoracic aortic dissection. Ann Vasc Surg 29(2):167–173

    Google Scholar 

  • Bonfanti M, Balabani S, Greenwood JP, Puppala S, Homer-Vanniasinkam S, Díaz-Zuccarini V (2017) Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data. J R Soc Interface 14(136):20170632

    Google Scholar 

  • Bonfanti M, Balabani S, Alimohammadi M, Agu O, Homer-Vanniasinkam S, Díaz-Zuccarini V (2018) A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: comparison with fluid-structure interaction. Med Eng Phys 58:72–79

    Google Scholar 

  • Canchi S, Guo X, Phillips M, Berwick Z, Kratzberg J, Krieger J, Roeder B, Haulon S, Chambers S, Kassab GS (2017) Role of re-entry tears on the dynamics of type B dissection flap. Ann Biomed Eng 46:186–196

    Google Scholar 

  • Chen HY, Peelukhana SV, Berwick ZC, Kratzberg J, Krieger JF, Roeder B, Chambers S, Kassab GS (2016) Editor’s choice—fluid-structure interaction simulations of aortic dissection with bench validation. Eur J Vasc Endovasc Surg 52(5):589–595

    Google Scholar 

  • Cheng Z, Tan FPP, Riga CV, Bicknell CD, Hamady MS, Gibbs RGJ, Wood NB, Xu XY (2010) Analysis of flow patterns in a patient-specific aortic dissection model. Journal of biomechanical engineering 132(5):51007

    Google Scholar 

  • Cheng Z, Juli C, Wood NB, Gibbs RGJ, Xu XY (2014a) Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements. Med Eng Phys 36(9):1176–1184

    Google Scholar 

  • Cheng Z, Wood NB, Gibbs RGJ, Xu XY (2014b) Geometric and flow features of type B aortic dissection: initial findings and comparison of medically treated and stented cases. Ann Biomed Eng 43(1):177–189

    Google Scholar 

  • Chiu P, Miller DC (2016) Evolution of surgical therapy for Stanford acute type A aortic dissection. Asvide 3(4):313. 10.21037/asvide.2016.313

    Article  Google Scholar 

  • Chung JW, Elkins C, Sakai T, Kato N, Vestring T, Semba CP, Slonim SM, Dake MD (2000a) True-lumen collapse in aortic dissection: part I. Evaluation of causative factors in phantoms with pulsatile flow. Radiology 214:87–98

    Google Scholar 

  • Chung JW, Elkins C, Sakai T, Kato N, Vestring T, Semba CP, Slonim SM, Dake MD (2000b) True-lumen collapse in aortic dissection part II. Evaluation of treatment. Radiology 214:99–106

    Google Scholar 

  • Di Achille P, Tellides G, Humphrey JD (2017) Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms. Int J Numer Methods Biomed Eng 33(5):1–17

    MathSciNet  Google Scholar 

  • Dillon-Murphy D, Noorani A, Nordsletten D, Figueroa CA (2016) Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech Model Mechanobiol 15(4):857–876

    Google Scholar 

  • Doyle BJ, Norman PE (2016) Computational biomechanics in thoracic aortic dissection: today’s approaches and tomorrow’s opportunities. Annals of Biomedical Engineering 44(1):71–83

    Google Scholar 

  • Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52(5):1141–1152

    MathSciNet  MATH  Google Scholar 

  • Esmaily Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL (2013) A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys 244:63–79

    MathSciNet  MATH  Google Scholar 

  • Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Comput Methods Appl Mech Eng 286:40–62

    MathSciNet  MATH  Google Scholar 

  • Ganten M, Weber TF, Von Tengg-Kobligk H, Böckler D, Stiller W, Geisbüsch P, Kauffmann GW, Delorme S, Bock M, Kauczor H (2009) Motion characterization of aortic wall and intimal flap by ECG-gated CT in patients with chronic B-dissection. Eur J Radiol 72:146–153

    Google Scholar 

  • Greve JM, Les AS, Tang BT, Draney Blomme MT, Wilson NM, Dalman RL, Pelc NJ, Taylor CA (2006) Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am J Physiol Heart Circ Physiol 291(4):H1700–H1708. 10.1152/ajpheart.00274.2006

    Article  Google Scholar 

  • Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering

  • Hsiao A, Yousaf U, Alley MT, Lustig M, Chan FP, Newman B, Vasanawala SS (2015) Improved quantification and mapping of anomalous pulmonary venous flow with four-dimensional phase-contrast MRI and interactive streamline rendering. J Magn Reson Imaging 42(6):1765–1776

    Google Scholar 

  • Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation. Finite Elem Anal Des 47(6):593–599

    MathSciNet  Google Scholar 

  • Karmonik C, Bismuth J, Shah DJ, Davies MG, Purdy D, Lumsden AB (2011) Computational study of haemodynamic effects of entry- and exit-tear coverage in a DeBakey type III aortic dissection: technical report. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 42(2):172–177

    Google Scholar 

  • Kassab GS (2006) Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface/R Soc 3(11):719–40

    Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Figueroa Ca, Jansen KE, Taylor Ca (2010) Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elem Anal Des 46(6):514–525 ISSN 0168874X

    MathSciNet  Google Scholar 

  • Laskey WK, Parker HG, Ferrari VA, Kussmaul WG, Noordergraaf A (19900) Estimation of total systemic arterial compliance in humans. J Appl Physiol (Bethesda, Md.: 1985), 69(1):112–119, ISSN 8750-7587. http://www.ncbi.nlm.nih.gov/pubmed/2394640

  • Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845

    Google Scholar 

  • Maher G, Wilson NW, Marsden AL (2019) Accelerating cardiovascular model building with convolutional neural networks. In: Summer biomechanics, bioengineering and biotransport conference

  • Marsden AL (2013) Simulation based planning of surgical interventions in pediatric cardiology. Phys Fluids 25(10):101303

    Google Scholar 

  • Martufi G, Forneris A, Appoo JJ, Di Martino ES (2016) Is there a role for biomechanical engineering in helping to elucidate the risk profile of the thoracic aorta? Ann Thorac Surg 101(1):390–398

    Google Scholar 

  • Menichini C, Cheng Z, Gibbs RGJ, Xu XY (2016) Predicting false lumen thrombosis in patient-specific models of aortic dissection. J R Soc Interface. 10.1098/rsif.2016.0759

    Article  Google Scholar 

  • Menichini C, Cheng Z, Gibbs RGJ, Xu XY (2018) A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair. J Biomech 66:36–43

    Google Scholar 

  • Merkow J, Kriegman D, Marsden A, Zhuowen T (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau JF (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

    Google Scholar 

  • Moireau P, Bertoglio C, Xiao N, Figueroa CA, Taylor CA, Chapelle D, Gerbeau JF (2013) Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech Model Mechanobiol 12(3):475–496

    Google Scholar 

  • Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries 5Ed: theoretical, experimental and clinical principles. Taylor & Francis, London

    Google Scholar 

  • Osswald A, Karmonik C, Anderson JR, Rengier F, Karck M, Engelke J, Kallenbach K, Kotelis D, Partovi S, Böckler D, Ruhparwar A (2017) Elevated wall shear stress in aortic type B dissection may relate to retrograde aortic type a dissection: a computational fluid dynamics pilot study. Eur J Vasc Endovasc Surg 54(3):324–330

    Google Scholar 

  • Pasta S, Phillippi JA, Gleason TG, Vorp DA (2012) Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J Thorac Cardiovasc Surg 143(2):460–467

    Google Scholar 

  • Peelukhana SV, Wang Y, Berwick Z, Kratzberg J, Krieger J, Roeder R, Cloughs RE, Hsiao A, Chambers S, Kassab GS (2017) Role of pulse pressure and geometry of primary entry tear in acute type B dissection propagation. Ann Biomed Eng 45(3):592–603. 10.1007/s10439-016-1705-4

    Article  Google Scholar 

  • Peterss S, Mansour AM, Ross JA, Vaitkeviciute I, Charilaou P, Dumfarth J, Fang H, Ziganshin BA, Rizzo JA, Adeniran AJ, Elefteriades JA (2016) Changing pathology of the thoracic aorta from acute to chronic dissection: literature review and insights. J Am Coll Cardiol 68(10):1054–1065

    Google Scholar 

  • Qiao A, Yin W, Chu B (2015) Numerical simulation of fluid-structure interaction in bypassed DeBakey III aortic dissection. Comput Methods Biomech Biomed Eng 18(11):1173–1180

    Google Scholar 

  • Qiao Y, Zeng Y, Ding Y, Fan J, Luo K, Zhu T (2019) Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Comput Methods Biomech Biomed Eng 22(6):620–630

    Google Scholar 

  • Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N (2013) Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys 35(6):784–791

    Google Scholar 

  • Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH (2011) Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg 53(4):950–957

    Google Scholar 

  • Sailer AM, van Kuijk SM, Nelemans PJ, Chin AS, Kino A, Huininga M, Schmidt J, Mistelbauer G, Bäumler K, Chiu P, Fischbein MP, Dake MD, Miller DC, Schurink GW, Fleischmann D (2017a) Computed tomography imaging features in acute uncomplicated Stanford type-B aortic dissection predict late adverse events. Circ Cardiovasc Imaging 10(4):e005709

    Google Scholar 

  • Sailer AM, Nelemans PJ, Hastie TJ, Chin AS, Huininga M, Chiu P, Fischbein MP, Dake MD, Miller DC, Schurink GW, Fleischmann D (2017b) Prognostic significance of early aortic remodeling in acute uncomplicated type B aortic dissection and intramural hematoma. J Thorac Cardiovasc Surg 154(4):1192–1200. https://doi.org/10.1016/j.jtcvs.2017.04.064

    Article  Google Scholar 

  • Seo J, Schiavazzi DE, Marsden AL (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech. ISSN 01787675

  • Shang EK, Nathan DP, Fairman RM, Bavaria JE, Gorman RC, Gorman JH, Jackson BM (2015) Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections. J Vasc Surg 62(2):279–284

    Google Scholar 

  • Si H (2008) Adaptive tetrahedral mesh generation by constrained Delaunay refinement. Int J Numer Meth Eng 75:856–880

    MathSciNet  MATH  Google Scholar 

  • Simo JC, Hughes TJR (1998) Comput Inelasticity

  • Sommer G, Sherifova S, Oberwalder PJ, Dapunt OE, Ursomanno PA, DeAnda A, Griffith BE, Holzapfel GA (2016) Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J Biomech 49(12):2374–2382

    Google Scholar 

  • Spinelli D, Benedetto F, Donato R, Piffaretti G, Marrocco-Trischitta MM, Patel HJ, Eagle KA, Trimarchi S (2018) Current evidence in predictors of aortic growth and events in acute type B aortic dissection. J Vasc Surg 68(6):1925–1935.e8

    Google Scholar 

  • Takizawa K, Tezduyar TE, Sasaki T (2018) Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization. Lect Notes Appl Comput Mech 84:101–122

    Google Scholar 

  • Tang DG, Dake MD (2009) TEVAR for acute uncomplicated aortic dissection: immediate repair versus medical therapy. Semin Vasc Surg 22(3):145–151

    Google Scholar 

  • Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: sixth international bio-fluid mechanics symposium and workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38(3):1188–1203

    Google Scholar 

  • Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interaction with the space-time finite elements: solution techniques. Int J Numer Meth Fluids 54(October 2007):855–900

    MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242

    MATH  Google Scholar 

  • Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space-time fluid—structure interaction technique. Int J Numer Methods Fluids 601–629:2008

    MATH  Google Scholar 

  • Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkins-Diehr N (2014) Xsede: accelerating scientific discovery. Comput Sci Eng 16(5):62–74

    Google Scholar 

  • Trimarchi S, Tolenaar JL, Jonker FHW, Murray B, Tsai TT, Eagle KA, Rampoldi V, Verhagen HJM, Van Herwaarden JA, Moll FL, Muhs BE, Elefteriades JA (2013) Importance of false lumen thrombosis in type B aortic dissection prognosis. J Thorac Cardiovasc Surg 145(3 SUPPL.):S208–S212

    Google Scholar 

  • Tsai TT, Evangelista A, Nienaber CA, Myrmel T, Meinhardt G, Cooper JV, Smith DE, Suzuki T, Fattori R, Llovet A, Froehlich J, Hutchison S, Distante A, Sundt T, Beckman J, Januzzi JL, Isselbacher EM, Eagle KA (2007) Partial Thrombosis of the false lumen in patients with acute type B aortic dissection. N Engl J Med 357(4):349–359

    Google Scholar 

  • Tsai TT, Schlicht MS, Khanafer K, Bull JL, Valassis DT, Williams DM, Berguer R, Eagle KA (2008) Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aortic dissection. Journal of Vascular Surgery 47(4):844–851

    Google Scholar 

  • Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2016) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541. https://doi.org/10.1007/s10439-016-1762-8

    Article  Google Scholar 

  • Wan Ab Naim WN, Ganesan PB, Sun Z, Chee KH, Hashim SA, Lim E (2014) A perspective review on numerical simulations of hemodynamics in aortic dissection. Sci World J. https://doi.org/10.1155/2014/652520

    Article  Google Scholar 

  • Yamada H, Sakata N, Wada H, Tashiro T, Tayama E (2015) Age-related distensibility and histology of the ascending aorta in elderly patients with acute aortic dissection. J Biomech 48(12):3267–3273

    Google Scholar 

  • Yang S, Li X, Chao B, Wu L, Cheng Z (2014) Abdominal aortic intimal flap motion characterization in acute aortic dissection: assessed with retrospective ECG-gated thoracoabdominal aorta dual-source CT angiography. PLoS ONE 9(2):87664

    Google Scholar 

  • Yu SCH, Liu W, Wong RHL, Underwood M, Wang D (2016) The potential of computational fluid dynamics simulation on serial monitoring of hemodynamic change in type B aortic dissection. Cardiovasc interv Radiol 39:1090–1098

    Google Scholar 

Download references

Acknowledgements

This work used the Extreme Science and Engineering Discovery Environment [(XSEDE), Towns et al. (2014)], on cluster Stampede2 at UT Austin, through allocation of P.I. Alison Marsden. XSEDE is supported by National Science Foundation Grant Number ACI-1548562. This work used the Stanford Research Computing Center (SRCC). Additionally, we acknowledge the open-source projects Paraview at www.paraview.org, Meshmixer at www.meshmixer.com and the open-source SimVascular project at www.simvascular.org. This research was funded by the Stanford Cardiovascular Institute (Grant No. N/A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Bäumler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 662 KB)

Supplementary material 2 (avi 652 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäumler, K., Vedula, V., Sailer, A.M. et al. Fluid–structure interaction simulations of patient-specific aortic dissection. Biomech Model Mechanobiol 19, 1607–1628 (2020). https://doi.org/10.1007/s10237-020-01294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01294-8

Keywords

Navigation