Skip to main content
Log in

Abstract

Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Biswas, P. Ares-Gastesi and S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551–1560, alg-geom/9510011.

    Google Scholar 

  2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.

  3. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188–236.

  4. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77–128, math.RT/9912012.

    Google Scholar 

  5. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49–149.

    Google Scholar 

  6. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1–52, math.RT/0305434.

    Google Scholar 

  7. L. Bers, Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65–83, Gordon and Breach (1970).

  8. L. Bers, On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670–600.

    Google Scholar 

  9. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139–162.

  10. N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002).

  11. M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217–239.

    Google Scholar 

  12. J.-J Brylinsky and P. Deligne, Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5–85.

    Google Scholar 

  13. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997).

  14. L. O. Chekhov and V. V. Fock, Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511–528, math.QA/9908165.

  15. K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361–382.

    Google Scholar 

  16. P. Deligne, Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970).

  17. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math.,24 (1984), 81–180, in Russian.

    Google Scholar 

  18. S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127–131.

  19. H. Esnault, B. Kahn, M. Levine and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73–118.

    Google Scholar 

  20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.

  21. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67–86, math.QA/9802054.

  22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.

  23. V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348.

  24. V. V. Fock and A. B. Goncharov, Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312.

  25. V. V. Fock and A. B. Goncharov, Cluster\(\mathcal{X}\)-Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408.

  26. V. V. Fock and A. B. Goncharov, to appear.

  27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335–380, math.RA/9912128.

    Google Scholar 

  28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497–529, math.RT/0104151.

  29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63–121, math.RA/0208229.

    Google Scholar 

  30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119–144, math.CO/0104241.

  31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12–28; no. 3, 5–26.

  32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original.

  33. F. R. Gantmacher, M. G. Krein, Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002).

  34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899–934, math.QA/0208033.

  35. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil–Petersson forms, Duke Math. J., 127 (2005), no. 2, 291–311, math.QA/0309138.

  36. O. Guichard, Sur les répresentations de groupes de surface, preprint.

  37. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200–225.

  38. W. Goldman, Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126–159.

    Google Scholar 

  39. A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197–318.

    Google Scholar 

  40. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43–96, Amer. Math. Soc., Providence, RI (1994).

  41. A. B. Goncharov, Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169–210, Amer. Math. Soc., Providence, RI (1993).

  42. A. B. Goncharov, Deninger’s conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631–2656, alg-geom/9512016.

  43. A. B. Goncharov, Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1–6; math.AG/0207036.

  44. A. B. Goncharov and Yu. I. Manin, Multiple ζ-motives and moduli spaces ℳ0,n, Compos. Math., 140 (2004), no. 1, 1–14, math.AG/0204102.

    Google Scholar 

  45. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157–176.

    Google Scholar 

  46. N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449–473.

  47. N. J. Hitchin, The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59–126.

    Google Scholar 

  48. R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105–115.

    Google Scholar 

  49. I. Kra, Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48–70, Springer, Berlin (1974).

  50. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990–1992, Birkhäuser Boston, Boston, MA (1993), 173–187.

  51. F. Labourie, Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003).

  52. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531–568, Birkhäuser Boston, Boston, MA (1994).

  53. G. Lusztig, Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281–295, Cambridge Univ. Press, Cambridge (1997).

  54. C. McMullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425–454.

  55. J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971).

  56. I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999).

  57. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299–339.

    Google Scholar 

  58. R. C. Penner, Weil–Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559–608.

    Google Scholar 

  59. R. C. Penner, Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143–215.

  60. R. C. Penner, The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293–312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997).

  61. R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992).

  62. I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273–280.

    Google Scholar 

  63. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321–322.

    Google Scholar 

  64. C. Simpson, Constructing variations of Hodge structures using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918.

    Google Scholar 

  65. J.-P. Serre, Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965).

  66. K. Strebel, Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984).

  67. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947–974, math.RT/0307082.

  68. A. A. Suslin, Homology of GL n , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188–204.

  69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.

  70. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88–92.

    Google Scholar 

  71. S. Wolpert, Geometry of the Weil–Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Fock or Alexander Goncharov.

About this article

Cite this article

Fock, V., Goncharov, A. Moduli spaces of local systems and higher Teichmüller theory. Publ.math.IHES 103, 1–211 (2006). https://doi.org/10.1007/s10240-006-0039-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-006-0039-4

Keywords

Navigation