Skip to main content
Log in

Existence of log canonical flips and a special LMMP

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Let (X/Z,B+A) be a Q-factorial dlt pair where B,A≥0 are Q-divisors and K X +B+A Q 0/Z. We prove that any LMMP/Z on K X +B with scaling of an ample/Z divisor terminates with a good log minimal model or a Mori fibre space. We show that a more general statement follows from the ACC for lc thresholds. An immediate corollary of these results is that log flips exist for log canonical pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexeev, C. Hacon, and Y. Kawamata, Termination of (many) 4-dimensional log flips, Invent. Math., 168 (2007), 433–448.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova, 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhden- nye Algebry, 220–239; translation in Proc. Steklov Inst. Math., 240 (2003), 214–233.

  3. F. Ambro, The moduli b-divisor of an lc-trivial fibration, Compos. Math., 141 (2005), 385–403.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.

    MATH  Google Scholar 

  5. C. Birkar, On existence of log minimal models, Compos. Math., 146 (2010), 919–928.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Birkar, On existence of log minimal models II, J. Reine Angew. Math., 658 (2011), 99–113.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Birkar, Divisorial algebras and modules on schemes, arXiv:1105.0441v2.

  8. C. Birkar and M. Păun, Minimal models, flips and finite generation: a tribute to V.V. Shokurov and Y.-T. Siu, in Classification of Algebraic Varieties, European Math. Society Series of Congress Reports, 2010.

    Google Scholar 

  9. C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23 (2010), 405–468.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. de Fernex, L. Ein, and M. Mustaţă, Shokurov’s ACC Conjecture for log canonical thresholds on smooth varieties, Duke Math. J., 152 (2010), 93–114.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Fujino, Special termination and reduction to pl flips, in Flips for 3-Folds and 4-Folds, Oxford University Press, London, 2007.

    Google Scholar 

  12. O. Fujino, Finite generation of the log canonical ring in dimension four, Kyoto J. Math., 50 (2010), 671–684.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Jpn. Acad., Ser. A, Math. Sci., 87 (2011), 25–30.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., 47 (2011), 727–789.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Fujino and Y. Gongyo, Log pluricanonical representations and abundance conjecture, arXiv:1104.0361v1.

  16. O. Fujino and Y. Gongyo, On canonical bundle formulae and subadjunctions, Michigan Math. J. (to appear), arXiv:1009.3996v1.

  17. C. D. Hacon and J. McKernan, Extension theorems and the existence of flips, in Flips for 3-Folds and 4-Folds, Oxford University Press, London, 2007.

    Google Scholar 

  18. C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type II, J. Am. Math. Soc., 23 (2010), 469–490.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. D. Hacon and Ch. Xu, Existence of log canonical closures, arXiv:1105.1169v2.

  20. C. D. Hacon and Ch. Xu, On finiteness of B-representation and semi-log canonical abundance, arXiv:1107.4149v1.

  21. R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.

    MATH  Google Scholar 

  22. S. Keel, K. Matsuki, and J. McKernan, Log abundance theorem for threefolds, Duke Math. J., 75 (1994), 99–119.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Kollár, Seminormal log centers and deformations of pairs, arXiv:1103.0528v1.

  24. J. Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756v1.

  25. C.-J. Lai, Varieties fibered by good minimal models, Math. Ann., 350 (2011), 533–547.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Am. Math. Soc., 1 (1988), 117–253.

    MATH  Google Scholar 

  27. S. Okawa, On images of Mori dream spaces, arXiv:1104.1326v1.

  28. Yu. Prokhorov, On the Zariski decomposition problem, Tr. Mat. Inst. Steklova, 240 (2003), 43–73.

    MathSciNet  Google Scholar 

  29. V. V. Shokurov, Three-dimensional log flips, Russ. Acad. Sci. Izv. Math., 40 (1993), 95–202. With an appendix in English by Yujiro Kawamata.

    Article  MathSciNet  Google Scholar 

  30. V. V. Shokurov, 3-fold log models, Algebr. Geom., 4. J. Math. Sci., 81 (1996), 2667–2699.

    MathSciNet  MATH  Google Scholar 

  31. V. V. Shokurov, Prelimiting flips, Proc. Steklov Inst. Math., 240 (2003), 75–213.

    MathSciNet  Google Scholar 

  32. V. V. Shokurov, Letters of a bi-rationalist VII: ordered termination, Proc. Steklov Inst. Math., 264 (2009), 178–200.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caucher Birkar.

About this article

Cite this article

Birkar, C. Existence of log canonical flips and a special LMMP. Publ.math.IHES 115, 325–368 (2012). https://doi.org/10.1007/s10240-012-0039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-012-0039-5

Keywords

Navigation