Skip to main content
Log in

Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We construct a representation of the affine W-algebra of \({\mathfrak{g}}{\mathfrak{l}}_{r}\) on the equivariant homology space of the moduli space of U r -instantons, and we identify the corresponding module. As a corollary, we give a proof of a version of the AGT conjecture concerning pure N=2 gauge theory for the group SU(r).

Our approach uses a deformation of the universal enveloping algebra of W 1+∞, which acts on the above homology space and which specializes to \(W({\mathfrak{g}}{\mathfrak{l}}_{r})\) for all r. This deformation is constructed from a limit, as n tends to ∞, of the spherical degenerate double affine Hecke algebra of GL n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville correlation functions from four dimensional gauge theories, Lett. Math. Phys., 91 (2010), 167–197.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Arakawa, Representation theory of W-algebras, Invent. Math., 169 (2007), 219–320.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differ. Geom., 55 (2000), 193–227.

    MathSciNet  MATH  Google Scholar 

  4. Y. Berest, P. Etingof, and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., 118 (2003), 279–337.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bernstein and V. Lunts, Equivariant Sheaves and Functors, Lecture Notes in Mathematics, vol. 1578, Springer, Berlin, 1994.

    MATH  Google Scholar 

  6. A. Bilal, Introduction to W-algebras, in String Theory and Quantum Gravity (Trieste, 1991), pp. 245–280, World Scientific, River Edge, 1992.

    Google Scholar 

  7. A. Braverman, B. Feigin, M. Finkelberg, and L. Rybnikov, A finite analog of the AGT relation I: finite W-algebras and quasimaps’ spaces, Commun. Math. Phys., 308 (2011), 457–478.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Burban and O. Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Math. J., 161 (2012), 1171–1231.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Cheah, Cellular decompositions for nested Hilbert schemes of points, Pac. J. Math., 183 (1998), 39–90.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Cherednik, Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005.

    Book  MATH  Google Scholar 

  11. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhaüser, Basel, 1996.

    Google Scholar 

  12. G. Ellingsrud and S. A. Stromme, On the homology of the Hilbert scheme of points in the plane, Invent. Math., 87 (1987), 343–352.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Fateev and V. A. Litvinov, Integrable structure, W-symmetry and AGT relation, preprint arXiv:1109.4042 (2011).

  14. B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys., A7 (1992), 197–215.

    Article  MathSciNet  Google Scholar 

  15. B. Feigin and E. Frenkel, Integrals of motion and quantum groups, in Proceedings of the C.I.M.E. School Integrable Systems and Quantum Groups (Italy, June 1993), Lect. Notes in Math., vol. 1620, pp. 349–418, Springer, Berlin, 1995.

    Chapter  Google Scholar 

  16. E. Frenkel and D. Ben Zvi, Vertex Algebras and Algebraic Curves, 2nd ed., Mathematical Surveys and Monographs, Am. Math. Soc., Providence, 2004.

    MATH  Google Scholar 

  17. E. Frenkel, V. Kac, A. Radul, and W. Wang, W 1+∞ and \(W({\mathfrak{g}}{\mathfrak{l}}_{N})\) with central charge N, Commun. Math. Phys., 170 (1995), 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Gaiotto, Asymptotically free N=2 theories and irregular conformal blocks, arXiv:0908.0307 (2009).

  19. M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., 131 (1998), 25–83.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett., 3 (1996), 275–291.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Kac, Vertex Algebras for Beginners, University Lecture Series, vol. 10, Am. Math. Soc., Providence, 1998.

    MATH  Google Scholar 

  22. M. Kapranov, Eisenstein series and quantum affine algebras. Algebraic geometry, 7, J. Math. Sci. (N.Y.), 84 (1997), 1311–1360.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Kassel, Quantum Groups, Graduate Texts in Mathematics, vol. 155, Springer, New York, 1995.

    Book  MATH  Google Scholar 

  24. A. Licata and A. Savage, Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves, Sel. Math., 16 (2010), 201–240.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Math. Mon., 1995.

    MATH  Google Scholar 

  26. A. Malkin, Tensor product varieties and crystals: The ADE case, Duke Math. J., 116 (2003), 477–524.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Matsuo, K. Nagatomo, and A. Tsuchiya, Quasi-Finite Algebras Graded by Hamiltonian and Vertex Operator Algebras, Moonshine: The First Quarter Century and Beyond, pp. 282–329, London Math. Soc. Lecture Note Ser., vol. 372, Cambridge Univ. Press, Cambridge, 2010.

    Google Scholar 

  28. D. Maulik and A. Okounkov, Quantum cohomology and quantum groups, arXiv:1211.1287 (2012).

  29. H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2), 145 (1997), 379–388.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Nakajima, Quiver varieties and tensor products, Invent. Math., 146 (2001), 399–449.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Nakajima and K. Yoshioka, Instanton counting on blowup. I. 4-Dimensional pure gauge theory, Invent. Math., 162 (2005), 313–355.

    Article  MathSciNet  MATH  Google Scholar 

  32. O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math., 147 (2011), 188–234.

    Article  MathSciNet  MATH  Google Scholar 

  33. O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the K-theory of the Hilbert scheme of A 2, Duke Math J., 162 (2013), 279–366, doi:10.1215/00127094-1961849

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Publ. Res. Inst. Math. Sci., 12 (1977), 455–459.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math., 77 (1989), 76–115.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Suzuki, Rational and trigonometric degeneration of the double affine Hecke algebra of type A, Int. Math. Res. Not., 37 (2005), 2249–2262.

    Article  Google Scholar 

  37. M. Varagnolo and E. Vasserot, On the K-theory of the cyclic quiver variety, Int. Math. Res. Not., 18 (1999), 1005–1028.

    Article  MathSciNet  Google Scholar 

  38. M. Varagnolo and E. Vasserot, Standard modules of quantum affine algebras, Duke Math. J., 111 (2002), 509–533.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Varagnolo and E. Vasserot, Finite dimensional representations of DAHA and affine Springer fibers: the spherical case, Duke Math. J., 147 (2007), 439–540.

    Article  MathSciNet  Google Scholar 

  40. E. Vasserot, Sur l’anneau de cohomologie du schéma de Hilbert de C 2, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 7–12.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton University Press, Princeton, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vasserot.

Additional information

This research was partially supported by the ANR grant number ANR-10-BLAN-0110.

About this article

Cite this article

Schiffmann, O., Vasserot, E. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2 . Publ.math.IHES 118, 213–342 (2013). https://doi.org/10.1007/s10240-013-0052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-013-0052-3

Keywords

Navigation