Skip to main content
Log in

Bayesian Lasso with neighborhood regression method for Gaussian graphical model

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T.W. An introduction to multivariate statistical analysis. Wiley-Interscience, London, 2003

    MATH  Google Scholar 

  2. Atay-Kayis, A, Massam, H. The marginal likelihood for decomposable and non-decomposable graphical Gaussian models. Biometrika, 92: 317–335 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae, K., Mallick, B.K. Gene selection using a two-Level hierarchical Bayesian model. Bioinformatics, 20: 3423–3430 (2004)

    Article  Google Scholar 

  4. Banerjee, O., El Ghaoui, L, d’Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9: 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Carvalho, C.M., Polson, N.G., Scott, J.G. The horseshoe estimator for sparse signals. Biometrika, 97: 465–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hans, C. Bayesian lasso regression. Biometrika, 96: 835–845 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. Least angle regression. Ann. Statist, 32: 409–499 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Figueiredo, M.A.T. Adaptive sparseness for supervised learning. IEEE transactions on pattern analysis and machine intelligence, 25: 1150–1159 (2003)

    Article  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9: 432–441 (2008)

    Article  MATH  Google Scholar 

  10. Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., West, M. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20: 388–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kyung, M., Je, G., Malay, G., George, C. Penalized Regression, Standard Errors, and Bayesian Lassos. Bayesian Analysis, 2: 369–412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lauritzen, S.L. Graphical models. Clarendon Press, Oxford, 1996

    MATH  Google Scholar 

  13. Meinshausen, N., Buhlmann, P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34: 1436–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Park, T., Casella, G. The Bayesian Lasso. Journal of the American Statistical Association, 103: 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roverato, A. Hyper-inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scandinavian Journal of Statistics, 29: 391–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sachs, K., Perez, O., Peer, D., Lauffenburger, D.A., Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308: 523–529 (2005)

    Article  Google Scholar 

  17. Scott, J.G., Carvalho, C.M. Feature-inclusion stochastic search for Gaussian graphical models. Journal of Computational and Graphical Statistics, 17: 790–808 (2008)

    Article  MathSciNet  Google Scholar 

  18. Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Ser. B, 58: 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Wang, H., West, M. Bayesian analysis of matrix normal graphical models. Biometrika, 96: 821–834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wong, F., Carter, C.K., Kohn, R. Efficient estimation of covariance selection models. Biometrika, 90: 809–830 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Whittaker, J. Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, Chichester, 1990

    MATH  Google Scholar 

  22. Wang, H. The Bayesian graphical Lasso and efficient posterior computation. Bayesian Analysis, 7: 771–790 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wang, H., Carvalho, C.M. Simulation of hyper-inverse wishart distributions for non-decomposable graphs. Electronic Journal of Statistics, 4: 1470–1475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yuan, M., Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 94: 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research, 11: 2261–2286 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank all Associate Editors and gratefully acknowledge the helpful comments of the reviewers that substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-qun Li.

Additional information

Supported by the National Natural Science Foundation of China (No. 11571080).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Fq., Zhang, Xs. Bayesian Lasso with neighborhood regression method for Gaussian graphical model. Acta Math. Appl. Sin. Engl. Ser. 33, 485–496 (2017). https://doi.org/10.1007/s10255-017-0676-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-017-0676-z

Keywords

2000 MR Subject Classification

Navigation