Skip to main content
Log in

DNA banking for plant breeding, biotechnology and biodiversity evaluation

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The manipulation of DNA is routine practice in botanical research and has made a huge impact on plant breeding, biotechnology and biodiversity evaluation. DNA is easy to extract from most plant tissues and can be stored for long periods in DNA banks. Curation methods are well developed for other botanical resources such as herbaria, seed banks and botanic gardens, but procedures for the establishment and maintenance of DNA banks have not been well documented. This paper reviews the curation of DNA banks for the characterisation and utilisation of biodiversity and provides guidelines for DNA bank management. It surveys existing DNA banks and outlines their operation. It includes a review of plant DNA collection, preservation, isolation, storage, database management and exchange procedures. We stress that DNA banks require full integration with existing collections such as botanic gardens, herbaria and seed banks, and information retrieval systems that link such facilities, bioinformatic resources and other DNA banks. They also require efficient and well-regulated sample exchange procedures. Only with appropriate curation will maximum utilisation of DNA collections be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam D (2000) Nature 408:792–793

    Article  PubMed  CAS  Google Scholar 

  • Adams RP (1988) The preservation of genomic DNA: DNA Bank-Net. AIBS Meeting, University of California, Davis, California

  • Adams RP (1998) In: Adams RP, Adams JE (eds) Conservation of plant genes III: conservation and utilisation of African plants, Monographs in Systematic Botany 71. Missouri Botanic Garden Press, USA, pp 1–8

  • Adams RP, Adams JE (1992) Conservation of plant genes: DNA banking and in vitro biotechnology. Academic, San Diego

    Google Scholar 

  • Adams RP, Adams JE (1998) Conservation of plant genes III: conservation and utilisation of African plants. Monographs in Systematic Botany 71. Missouri Botanic Garden Press, USA

    Google Scholar 

  • Adams RP, Do N, Ge-lin C (1992) In: Adams RP, Adams JE (eds) Conservation of plant genes: DNA banking and in vitro biotechnology. Academic, San Diego, pp 135–52

  • Adams RP, Miller JS, Golenberg EM, Adams JE (1994) Monographs in Systematic Botany 48. Missouri Botanic Garden Press, USA

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JD, Smith JA, Struhl K (2002) Short protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  • Bisby FA (2000) Science 289:2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Blackmore S (2002) Science 298:365

    Article  PubMed  CAS  Google Scholar 

  • Boguski MS (1998) Trends Guide Bioinform 1998:1–3

    Google Scholar 

  • Borman AM, Linton CJ, Miles S-J, Campbell CK, Johnson EM (2006) Med Mycol 44:389–398

    Article  PubMed  CAS  Google Scholar 

  • Botanic Gardens Conservation Sectretariat (1987) International transfer format for botanic garden plant records. Plant taxonomic database standards no.1. Hunt Institute for Botanical Documentation, Pittsburgh, USA

  • Bridson D, Forman L (1992) The herbarium handbook, revised edition. Royal Botanic Gardens, Kew

    Google Scholar 

  • Carolan JC, Hook IL, Chase MW, Kadereit JW, Hodkinson TR (2006) Ann Bot (Lond) 98:141–155

    Article  CAS  Google Scholar 

  • Chase MW, Hills HG (1991) Taxon 40:215–220

    Article  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haider N, Savolainen V (2005) Phil Trans R Soc B 360:1471–2970

    Article  CAS  Google Scholar 

  • Commission on genetic resources for food and agriculture (CGRFA) (2004) International treaty on plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture

  • Couch, JA, Fritz PJ (1990) Plant Mol Biol Rep 8:8–12

    CAS  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Dahlgren R, Clifford HT, Yeo PF (1985) The families of monocotyledons. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Demissew S, Nic Lughadha E, Smith G (2005) Abstract 12.6.2. Abstracts of the XII International Botanical Congress, Vienna, Austria, pp 211

  • DeVries J, Heine M, Harms K, Wackernagel W (2003) Appl Environ Microbiol 69:4455–4462

    Article  CAS  Google Scholar 

  • Do N, Adams RP (1991) BioTechniques 10:162–166

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) Phytochem Bull Bot Soc Am 19:11–15

    Google Scholar 

  • Dowling TE, Moritz C, Palmer JD, Riesberg LH (1996) In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, pp 249–320

  • Drábková L, Kirschner JAN, Vlcek C (2002) Plant Mol Biol Rep 20:161–175

    Google Scholar 

  • Dunham VL, Bryant JA (1983) Nuclei. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic, New York, pp 237–275

    Google Scholar 

  • Dutfield G (2000) Intellectual property rights, trade and biodiversity. Earthscan Publications Ltd

  • Edwards KJ (1998) In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity, plants and animals. Chapman & Hall, London, pp 22–24

  • Edwards K, Johnstone C, Thompson C (1991) Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Ford-Lloyd BF, Jackson M (1986) Plant genetic resources, an introduction to their conservation and use. Edward Arnold, London

    Google Scholar 

  • Gilmore S, Weston PH, Thomson JA (1993) Aust Syst Bot 6:139–148

    Article  Google Scholar 

  • Global strategy for plant conservation (GSPC) (2002) Secretariat of the Convention on Biological Diversity, Montreal, Canada

  • Golenberg EM (1994) In: Adams RP, Miller JS, Golenberg EM, Adams JE (eds) Conservation of plant genes II: utilization of ancient and modern DNA, Monographs in Systematic Botany 48, Missouri Botanic Garden Press, USA, pp15–26

  • Harbourne ME, Douglas GC, Waldren S, Hodkinson TR (2005) J Plant Res 118:339–441

    Article  PubMed  CAS  Google Scholar 

  • Hayashizaki Y, Kawai J (2004) Nat Rev Genet 5:223–228

    Article  PubMed  CAS  Google Scholar 

  • Herrmann RG, Palta HK, Kowallik KV (1980) Planta 148:319–327

    Article  Google Scholar 

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004) Mol Ecol 16:3437–3452

    Article  CAS  Google Scholar 

  • Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996) In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, pp 321–384

  • Hodkinson TR, Parnell JAN (2007a) Reconstructing the tree of life: taxonomy and systematics of species rich taxa. Systematics Association, special series vol 72. Taylor and Francis, CRC Press, Boca Raton

  • Hodkinson TR, Parnell JAN (2007b) In: Hodkinson TR, Parnell JAN (eds) Reconstructing the tree of life: taxonomy and systematics of species rich taxa, Systematics Association, special series vol 72. Taylor and Francis, CRC Press, Boca Raton

  • Hodkinson TR, Renvoize SA, Ní Chonghaile G, Stapleton CMA, Chase MW (2000) J Plant Res 113:259–269

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo D, Salamin N, Renvoize SA (2002a) J Plant Res 115:381–392

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002b) Am J Bot 89:279–286

    CAS  Google Scholar 

  • Jones MC, Boffey SA (1984) FEBS Lett 174:215–218

    Article  CAS  Google Scholar 

  • Karakousis A, Langridge P (2003) Plant Mol Biol Rep 21:95a–95f

    Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Ann Bot (Lond) 78:143–149

    Article  CAS  Google Scholar 

  • Kasajima I, Ide Y, Ohkama-ohtsu N, Hayashi H, Yoneyama T, Fujiwara T (2004) Plant Mol Biol Rep 22:49–52

    CAS  Google Scholar 

  • Katterman FR, Shattuck VI (1983) Prep Biochem 13:347–359

    PubMed  CAS  Google Scholar 

  • Kelleher CT, Hodkinson TR, Douglas GC, Kelly DL (2005) Ann Bot (Lond) 96:1237–1246

    Article  CAS  Google Scholar 

  • Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O’Connor K, Prabhu A-L, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJM, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE. Plant J (in press)

  • Kristiansen KA, Cilieborg M, Drábková L, Jørgensen T (2005) Syst Bot 30:284–289

    Article  Google Scholar 

  • Lewitter F (1998) Trends Guide Bioinform 1998:3–5

    Google Scholar 

  • Lichtenstein C, Draper J (1986) In: Glover DM (ed) DNA cloning: a practical approach, vol 2. IRL Press, Oxford, UK, pp 67–119

  • Lipscomb D, Platnick N, Wheeler Q (2003) Trends Ecol Syst 18:65–66

    Article  Google Scholar 

  • Liston A, Rieseberg LD, Adams RP, Do N, Zhu G (1990) Ann Mo Bot Gard 77:859–863

    Article  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell, Oxford

    Google Scholar 

  • Marko MA, Chipperfield R, Birnboim HC (1982) Anal Biochem 121:382–387

    Article  PubMed  CAS  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation. Chapman & Hall, London, pp 15–39

  • McGrath S, Hodkinson TR, Salamin N, Barth S (2006) Mol Ecol Notes 6:449–452

    Article  CAS  Google Scholar 

  • Milligan BG (1992) In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, Oxford, pp 59–86

  • Mount DW (2004) Sequence and genome analysis, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Mueller UG, Wolfenbarger L (1999) Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nickrent DL (1994) Biotechniques 16:470–475

    PubMed  CAS  Google Scholar 

  • OJ L309 (1993) United Nations Convention on Biodiversity (CBD)

  • Palmer JD, Soltis DE, Chase MW (2004) Am J Bot 91:1437–1445

    Google Scholar 

  • Parnell J (2000) In: Rushton BS (ed) Biodiversity: the Irish dimension. Royal Irish Academy, Ireland, pp 205–216

  • Porebski S, Bailey LG, Baum BR (1997) Plant Mol Biol Rep 15:8–15

    CAS  Google Scholar 

  • Powell R, Gannon F (2002) Purification of DNA by phenol extraction and ethanol precipitation, Oxford Practical Approach Series 2002, Oxford University Press, UK

  • Prance BT (1997) In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation. Chapman & Hall, London, pp 1–14

  • Price CA (1983) In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic, New York, pp 1–24

  • Pridgeon AM, Solano R, Chase MW (2001) Am J Bot 88:2286–2308

    Article  CAS  Google Scholar 

  • Pyle MM, Adams RP (1989) Taxon 38:576–581

    Article  Google Scholar 

  • Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR (1998) Ann Bot (Lond) 82:99–105

    Article  Google Scholar 

  • Robledo JJ, Gil L (2005) Heredity 94:13–22

    Article  Google Scholar 

  • Rogstad SH (1992) Taxon 41:701–708

    Article  Google Scholar 

  • Rowland LJ, Nguyen B (1993) Biotechniques 14:735–736

    Google Scholar 

  • Rueda J, Linacero R, Vazquez AM (1998) In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity, plants and animals. Chapman & Hall, London, pp 10–14

  • Saini HS, Shepherd M, Henry RJ (1999) J Inst Brew 105:185–190

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanderson MJ, Driskell AC (2003) Trends Plant Sci 8:374–379

    Article  PubMed  CAS  Google Scholar 

  • Savolainen V, Chase MW (2003) Trends Genet 19:717–724

    Article  PubMed  CAS  Google Scholar 

  • Savolainen V, Reeves G (2004) Science 304:1445

    Article  PubMed  CAS  Google Scholar 

  • Savolainen V, Cuénoud P, Spichiger R, Martinez MDP, Crèvecoeur M, Manen J-F (1995) Plant Syst Evol 197:87–98

    Article  CAS  Google Scholar 

  • Seberg O, Petersen G (2007) In: Hodkinson TR, Parnell JAN (eds) Reconstructing the tree of life: taxonomy and systematics of species rich taxa, Systematics Association, special series vol 72. Taylor and Francis, CRC Press, Boca Raton

  • Soltis PS, Soltis DE (2000) Plant Mol Biol 42:45–75

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Spooner D, van Treuren R, Vicente MC (2005) Molecular markers for genebank management. IPGRI Tech Bull 10

  • Steiner JJ, Poklemba CJ, Fjellstrom RG, Elliott LF (1995) Nucleic Acids Res 23:2569–2570

    Article  PubMed  CAS  Google Scholar 

  • Storchová H, Hrdlicková R, Chrtek J, Tetera M, Fitze D, Fehrer J (2000) Taxon 49:79–84

    Article  Google Scholar 

  • Sugiura M, Shinozaki K, Zaita N, Kusuda M, Kumano M (1986) Plant Sci 44:211–216

    Article  CAS  Google Scholar 

  • System-wide genetic resources programme (SGRP) (2003) Booklet of CGIAR centre policy instruments, guidelines and statements on genetic resources, biotechnology and intellectual property rights, Version II. Produced by the system-wide genetic resources programme (SGRP) with the CGIAR genetic resources policy committee

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tautz D, Arctander P, Minelli R, Thomas RH, Vogler AP (2002) Nature 418:479

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Arctander P, Minelli R, Thomas RH, Vogler AP (2003) Trends Ecol Syst 18:70–74

    Article  Google Scholar 

  • Taylor JW, Swann EC (1994) In: Herrmann B, Hummel S (eds) Ancient DNA: recovery and analysis of genetic material from paleontological, archaeological, museum, medical, and forensic specimens. Springer, Berlin Heidelberg New York, pp 166–181

  • The Arabidopsis Genome Initiative (2000) Nature 408:796–815

    Article  Google Scholar 

  • Thomas WTB (2003) Ann Appl Biol 142:1–12

    Article  CAS  Google Scholar 

  • Thomson JA (2002) Telopea 9:755–760

    Google Scholar 

  • Thorne RF (1992) Aliso 13:365–389

    Google Scholar 

  • Toenniessen GH, O’Toole JC, DeVries J (2003) Curr Opin Plant Biol 6:191–198

    Article  PubMed  Google Scholar 

  • Tsukaya H, Iokawa Y, Kondo M, Ohba H (2005) J Plant Res 118:57–60

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M , Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, de Pamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, van de Peer Y, Rokhsar D (2006) Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Gillespie D (1979) PNAS 76:615–619

    Google Scholar 

  • Vos PR, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Kuiper M, Zabeau M (1995) Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (2000) Nature 408:794–795

    Article  PubMed  CAS  Google Scholar 

  • Waldren S, Martin JR, Curtis TCF, O’Sullivan A (1999) In: Rushton BS (ed) Biodiversity: the Irish dimension. Royal Irish Academy, Ireland, pp 54–65

  • Wilson EO (1992) The diversity of life. WW Norton, New York

    Google Scholar 

  • Wolfe AD, Liston A (1998) In: Soltis DE, Soltis PS, Doyle JF (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Dordrecht, pp 43–86

  • Young ND (1999) Mol Breed 5:505–510

    Article  Google Scholar 

  • Zhang W, Wendel JF, Clark LG (1997) Mol Phylogenet Evol 8:205–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Provost’s Academic Development Fund, TCD (grant to T.R.H. and S.W.), the Research Capacity Building Scheme TCD (grant to T.R.H.), and the Roche Research Foundation (grant to N.S.) for supporting the development of the TCD DNA Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor R. Hodkinson.

Appendices

Appendix 1

Protocol for DNA extraction using hot CTAB

The following protocol, (adapted from Doyle and Doyle 1987), will work well for a wide range of plant material and is particularly well suited to low sample throughput (typically 8–32 samples per day). If a large number of samples is to be extracted, then several improved grinding methods have been developed to speed up extractions. For example, Karakousis and Langridge (2003) used liquid nitrogen and ball bearings in a high throughput plant DNA extraction process. Other methods have used glass beads in microtitre plates (Steiner et al. 1995). Several commercially available kits allow partial or full automation and higher throughput. For example, McGrath et al. (2006) successfully developed a high throughput extraction protocol that used plant material ground with a mill (Retsch bead mill) or pestle and mortar and the magnetic bead-based method (Qiagen MagAttract Plant DNA core kit) that had been modified for use on a Hamilton MicrolabStar robotic system.

Materials

2× CTAB buffer, (100 mM Tris–HCl pH 8.0 (use Tris base and set pH using HCl); 1.4 M NaCl; 20 mM EDTA (Na ethylene-diamine-tetra-acetate); 2% CTAB (hexadecyl-trimethyl-ammonium bromide, w/v)

CI, 24:1 chloroform:isoamyl alcohol

Method

Caution: gloves should be worn at all times.

  1. 1.

    Preheat 5 ml of 2× CTAB extraction buffer and 20 μl mercapto-ethanol (in a 12 ml chloroform-resistant capped centrifuge tube) and a pestle and mortar at 65°C in a water bath.

  2. 2.

    Weigh out approximately 0.3–0.5 g of fresh leaf or 0.05–0.1 g dry leaf (or other plant tissue).

  3. 3.

    Cut leaf into small pieces using scissors or razor blade.

  4. 4.

    Grind leaf material in the pre-heated mortar using a small amount of extraction buffer (sterile sand may be added to aid grinding or liquid nitrogen used prior to grinding).

  5. 5.

    Add the remaining buffer, grind further, and swirl to suspend the slurry.

  6. 6.

    Pour the slurry back into the 12 ml centrifuge tube. Screw on the lid and then incubate the mixture at 65°C for at least 10 min with occasional mixing.

  7. 7.

    Add 5 ml of CI. Replace the lid and mix. Release the lid briefly to release gas and then tighten the lid.

  8. 8.

    Place on the shaker in a horizontal position for approximately 30 min.

  9. 9.

    Centrifuge the tube at 4,000 relative centrifugal force (rcf) for 10 min.

  10. 10.

    Gently remove the tube from the centrifuge, taking care not to disturb the separation. Remove the aqueous (upper) phase containing the DNA, using a transfer pipette, into a 50 ml conical-base tube. Ideally, the upper phase will be clear and colourless, but this is often not the case and does not interfere with the latter stages of the protocol.

  11. 11.

    Add an equal volume of isopropanol and invert the tube gently to precipitate the DNA. You may see the DNA precipitate at this stage.

  12. 12.

    Place the sample into the −20°C freezer to further precipitate the DNA (sometimes it is necessary to leave the sample overnight or longer).

  13. 13.

    Centrifuge the sample at 2,000 rcf for 5 min to pelletise the DNA.

  14. 14.

    Pour off the supernatant and add 1.5 ml of the wash buffer. Mix gently.

  15. 15.

    Centrifuge the sample at 2,000 rcf for 3 min to pelletise the DNA once more.

  16. 16.

    Pour off the supernatant and then gently place the tube upside down for 5 min on a paper towel to let the excess wash buffer drain away.

  17. 17.

    Turn the tube the right way up and let the pellet dry further for about 20 min (it is important to remove all traces of ethanol).

  18. 18.

    Dissolve the pellet in 0.5 ml of TE buffer (considerable mixing with a transfer pipette may be necessary to dissolve the pellet).

  19. 19.

    Transfer the DNA solution from the 50 ml tube into the labelled 1.5 ml centrifuge tube and store DNA in a freezer until required (preferably at −80°C).

The DNA is often of sufficient purity for many applications, but samples can be purified further if necessary using caesium chloride gradient centrifugation, genomic DNA purification kits, or selective binding of DNA to a silica matrix in the presence of a chaotrope (see Appendix 2).

Appendix 2

DNA purification

Crude purification can often be achieved by precipitation/washing (e.g. the ethanol washing steps of Appendix 1) and may yield DNA of sufficient purity for the required application. However, such DNA may need to be further purified. One of the best methods to purify DNA from previous extractions, or crude homogenates, is to use equilibrium gradient centrifugation using caesium chloride (Sambrook et al. 1989; Dowling et al. 1996; Ausubel et al. 2002). However, this procedure requires long ultracentrifugation and large amounts of toxic ethidium bromide. However, many other laboratories prefer faster, cheaper and less toxic methods. These sometimes compromise purity or stability but are generally adequate for most applications.

A standard method to remove protein from DNA extracts is to extract first with phenol:chloroform and then with chloroform (to remove any traces of phenol; Sambrook et al. 1989) or proteolytic enzymes such as pronase or proteinase K before extracting with organic solvents (Sambrook et al. 1989). Powell and Gannon (2002) describe a method where DNA extracts are purified with phenol extraction and ethanol precipitation. Dialysis can also be applied to remove salt, detergents (such as SDS and CTAB) and even some enzyme inhibitors (see Sambrook et al. 1989 and Ausubel et al. 2002 for dialysis procedures; or Powell and Gannon 2002 for a simple drop dialysis method). Another method of removing cellular proteins and polysaccharides is to precipitate them prior to precipitating the DNA. Some of these methods have the advantage of not requiring organic solvent extractions. These methods are often used in rapid miniprep methods (Milligan 1992; Edwards 1998).

Other methods of DNA purification have been developed that are based on selective binding of DNA to a silica matrix in the presence of a chaotrope (Vogelstein and Gillespie 1979; Marko et al. 1982; Gilmore et al. 1993). In these methods DNA is selectively bound to a silica matrix in a solution of chaotrope, washed with chaotrope to remove unbound contaminants, including RNA, carbohydrates and proteins, washed with ethanol to remove the chaotrope, and then eluted from the matrix. Modifications of these methods are used in various commonly used commercial genomic DNA purification kits. Even PCR purification spin columns can be used for genomic DNA purification if the investigator is not concerned about losing some high molecular weight DNA. The method of Gilmore et al. (1993) is an efficient purification technique that involves the selective binding of DNA to diatomite (diatomaceous earth) in the presence of a chaotrope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodkinson, T.R., Waldren, S., Parnell, J.A.N. et al. DNA banking for plant breeding, biotechnology and biodiversity evaluation. J Plant Res 120, 17–29 (2007). https://doi.org/10.1007/s10265-006-0059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0059-7

Keywords

Navigation