Skip to main content
Log in

Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Genetic variations within and among Rhizophora apiculata populations in the Greater Sunda Islands of Indonesia were studied using microsatellite markers. The study found 38 alleles on five loci in 15 populations. The observed (H o) and expected (H e) heterozygosity values are 0.338 and 0.378, respectively. Inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (F ST = 0.381) was similar to other mangrove species. The genetic diversity of R. apiculata populations along the coastline inside the archipelago (e.g., Buleleng, Donggala, Mamuju, and Takalar) was higher than those of population along the coastline outside the archipelago, especially northern Sumatra populations (i.e., Langkat, Tapanuli Tengah, Dumai, and Padang). The isolation by distances and sea currents directions as well as their connectivity might affect the gene flow and genetic exchange. The more isolated with fewer connections by sea currents, the smaller gene flow and genetic exchange observed between populations. The higher genetic exchange, on the contrary, occurred when population location was closer to the meeting point of the sea currents. The study also showed that the patterns of sea current movement seemed to have influence genetic clustering of populations which fell into three main groups (Sunda Shelf Mangroves) and one isolated population (New Guinea Mangroves).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbeláez-Cortes E, Castillo-Cárdenas MF, Toro-Perea N, Cárdenas-Henao H (2007) Genetic structure of the red mangrove (Rhizophora mangle L.) on the Colombian Pacific detected by microsatellite molecular markers. Hydrobiologia 583:321–330

    Article  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Bunt JS (1982) Studies of mangrove litter fall in tropical Australia. In: Clough BF (ed) Mangrove ecosystems in Australia: structure, function and management. Australian. National University Press, Canberra, pp 223–238

    Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Cerón-Souza I, Toro-Perea N, Cárdenas-Henao H (2005) Population genetic structure of neotropical mangrove species on the Colombian Pacific Coast: Avicennia germinans (Avicenniaceae). Biotropica 37:258–265

    Article  Google Scholar 

  • Cerón-Souza I, Bermingham E, McMillan WO, Jones FA (2012) Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol Biol 12:205

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Lin P, Lin Y (1996) Mating system and spontaneous mutation rates for chlorophyll deficiency in populations of the mangrove Kandelia candel. Hereditas 125:47–52

    Google Scholar 

  • Dodd RS, Afzal-Rafii Z, Kashani N, Budrick J (2002) Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol Ecol 11:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Drexler JZ (2001) Maximum Longevities of Rhizophora apiculata and R. mucronata propagules. Pac Sci 55:17–22

    Article  Google Scholar 

  • Duke NC (1995) Genetic diversity, distributional patterns and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia 295:161–181

    Article  Google Scholar 

  • Duke NC (2006) Australia’s Mangroves. The authoritative guide to Australia’s mangrove plants. University of Queensland, Brisbane

    Google Scholar 

  • Duke NC, Bunt JS, Williams WT (1984) Observations on the floral and vegetative phenologies of north-eastern Australian mangroves. Aust J Bot 32:87–99

    Article  Google Scholar 

  • Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7:27–47

    Article  Google Scholar 

  • Duke NC, Lo EYY, Sun M (2002) Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees 16:65–79

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conservation Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Sun M (2001) Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetlands Ecol Manage 9:203–209

    Article  CAS  Google Scholar 

  • Geng Q, Lian C, Goto S, Tao J, Kimura M, Islam M, Hogetsu T (2008) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17:4724–4739

    Article  CAS  PubMed  Google Scholar 

  • Giang LH, Hong PN, Tuan MS, Harada K (2003) Genetic variation of Avicennia marina (Forsk.) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellites and AFLP markers. Genes Genet Syst 78:399–407

    Article  CAS  Google Scholar 

  • Giesen W, Wulffraat S, Zieren M, Scholten L (2006) Mangrove guidebook for Southeast Asia. RAP Publication 2006/07. FAO Regional Office for Asia and the Pacific and Wetlands International, Bangkok

    Google Scholar 

  • Hamzah (2005) Studi keragaman genetik dan pendugaan derajat perkawinan silang berdasarkan analisis isozim serta pengujian provenansi jenis bakau (Rhizophora mucronata Lamk.). PhD Dissertation, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor (in Indonesian)

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hou D (1992) Rhizophora mucronata Poiret. In: Wulijarni-Soetjipto N, Lemmens RHMJ (eds) Plant resources of south-east Asia no 3. Dye and tannin-producing plants. Backhuys Publishers, Leiden, pp 110–112

    Google Scholar 

  • Hou D, Chan HT (1997) Rhizophora apiculata Blume. In: Faridah Hanum I, van der Maesen LJG (eds) Plant resources of south-east Asia No 11. Auxiliary plants. Backhuys Publishers, Leiden, pp 220–223

    Google Scholar 

  • Huang Y, Tan F, Su G, Deng S, He H, Shi S (2008) Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 133:47–56

    Article  PubMed  Google Scholar 

  • Inomata N, Wang X, Changtragoon S, Szmidt AE (2009) Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genet Syst 84:277–286

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Lian CL, Kameyama N, Wu B, Hogetsu T (2004) Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol Ecol Notes 4:110–112

    Article  CAS  Google Scholar 

  • Islam MS, Lian CL, Kameyama N, Wu B, Hogetsu T (2006a) Development and characterization of ten new microsatellite markers in a mangrove tree species Bruguiera gymnorrhiza (L.). Mol Ecol Notes 6:30–32

    Article  CAS  Google Scholar 

  • Islam MS, Tao JM, Geng QF, Lian CL, Hogetsu T (2006b) Isolation and characterization of eight compound microsatellite markers in a mangrove tree Kandelia candel (L.) Druce. Mol Ecol Notes 6:1111–1113

    Article  CAS  Google Scholar 

  • Lefort F, Echt C, Streiff R, Vendramin GG (1999) Microsatellite sequences: a new generation of molecular markers for forest genetics. For Genet 6:15–20

    Google Scholar 

  • Liu K, Muse SV (2005) Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and applications. Wiley, Oxford

    Google Scholar 

  • Maguire TL, Saenger P, Baverstock P, Henry R (2000a) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Ecol 9:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Maguire TL, Edwards KJ, Saenger P, Henry R (2000b) Characterization and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor Appl Genet 101:279–285

    Article  CAS  Google Scholar 

  • Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398

    Article  CAS  PubMed  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nettel A, Dodd RS (2007) Drifting propagules and receding swamps: genetic footprints of mangroves recolonization and dispersal along tropical coasts. Evolution 61:958–971

    Article  CAS  PubMed  Google Scholar 

  • Nettel A, Rafii F, Dodd RS (2005) Characterization of microsatellite markers for the mangrove tree Avicennia germinans L. (Avicenniaceae). Mol Ecol Notes 5:103–105

    Article  CAS  Google Scholar 

  • Olson DM, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pil MW, Boeger MRT, Muschner VC, Pie MR, Ostrensky A, Boeger WA (2011) Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Amer J Bot 98:1031–1039

    Article  Google Scholar 

  • Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica 12:229–231

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Ricklefs Re, Latham RE (1993) Global patterns of diversity in mangrove floras. In: Ricklefs RE, Schulter D (eds) Species diversity in ecoogical communities. University of Chicago Press, Chicago, pp 215–229

    Google Scholar 

  • Rosero-Galindo C, Gaitan-Solis E, Cardenas-Henao H, Tohme J, Toro-Perea N (2002) Polymorphic microsatellites in a mangrove species, Rhizophora mangle L. (Rhizophoraceae). Mol Ecol Notes 2:281–283

    Article  CAS  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Mar Freshw Res 49:277–286

    Article  CAS  Google Scholar 

  • Su G-H, Huang Y-L, Tan F-X, Ni X-W, Tang T, Shi S-H (2006) Genetic variation in Lumnitzera racemosa, a mangrove species from the Indo-West Pacific. Aquat Bot 84:341–346

    Article  CAS  Google Scholar 

  • Sugaya T, Takeuchi T, Yoshimaru H, Katsuta M (2002) Development and polymorphism of simple sequence repeat DNA markers for Kandelia candel (L.) Druce. Mol Ecol Notes 2:65–66

    Article  CAS  Google Scholar 

  • Sugaya T, Yoshimaru H, Takeuchi T, Katsuta M, Fujimoto K, Changtragoon S (2003) Development and polymorphism of simple sequence repeat DNA markers for Bruguiera gymnorrhiza (L.) Lamk. Mol Ecol Notes 3:88–90

    Article  CAS  Google Scholar 

  • Takayama K, Tamura M, Tateishi Y (2008) Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv Genet 9:1323–1325

    Article  CAS  Google Scholar 

  • Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T (2013) Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Amer J Bot 100:1191–1201

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tan F, Huang Y, Ge X, Su G, Ni X, Shi S (2005) Population genetic structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquat Bot 81:175–188

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Triest L (2008) Molecular ecoogy and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review. Aquat Bot 89:138–154

    Article  CAS  Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in South East Asia: shorelines, river systems, time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Wikramanayake E, Dinerstein E, Loucks CJ, Olson DM, Morrison J, Lamoreux J, McKnight M, Hedao P (2002) Terrestrial Ecoregions of the Indo-Pacific: a Conservation Assessment. Island Press, Washington

    Google Scholar 

  • Woodroffe CD, Grindrod J (1991) Mangrove biogeography: the role of Quaternary environmental and sea-level change. J Biogeogr 18:479–492

    Article  Google Scholar 

  • Wyrtki K (1961) Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. Naga Report Volume 2. The University of California, Scripps Institutions of Oceanography, La Jolla, p 195

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) PopGene Version 1.32, microsoft windows base software for population genetic analysis: a quick user’s guide. Center for International Forestry Research, University of Alberta, Alberta

    Google Scholar 

  • Zolgharnein H, Kamyab M, Keyvanshokooh S, Ghasemi A, Nabavi SMB (2010) Genetic diversity of Avicennia marina (Forsk.) Vierh. populations in the persian gulf by microsatellite markers. J Fish Aquat Sci 5:223–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Yuni Wiratini (Mangrove Information Center—Bali, Indonesia), Mr. Arief Mahmud (Mangrove Management Center—Medan, Indonesia), and Mr. Taufik Herdian Nugraha for their help during sampling process. Also, to Dr. Lee Hong Tnah and Dr. Chai Ting Lee (Forest Research Institute Malaysia—Malaysia) for their help on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andi Fadly Yahya or Seung-Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yahya, A.F., Hyun, J.O., Lee, J.H. et al. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J Plant Res 127, 287–297 (2014). https://doi.org/10.1007/s10265-013-0613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0613-z

Keywords

Navigation