Skip to main content
Log in

New and unusual forms of calcium oxalate raphide crystals in the plant kingdom

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Calcium oxalate crystals in higher plants occur in five major forms namely raphides, styloids, prisms, druses and crystal sand. The form, shape and occurrence of calcium oxalate crystals in plants are species- and tissue-specific, hence the presence or absence of a particular type of crystal can be used as a taxonomic character. So far, four different types of needle-like raphide crystals have been reported in plants. The present work describes two new and unusual forms of raphide crystals from the tubers of Dioscorea polystachya—six-sided needles with pointed ends (Type V) and four-sided needles with beveled ends (Type VI). Both of these new types of needles are distinct from the other four types by each having a surrounding membrane that envelopes a bundle of 10–20 closely packed thin crystalline sheets. The previously known four types of needles have solid or homogenous crystalline material, surrounded by a membrane or lamellate sheath called a crystal chamber. Only the Type VI crystals have beveled ends and the needles of the other five types have pointed ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Rais AH, Myers A, Watson L (1971) Isolation and properties of oxalate crystals from plants. Ann Bot Lond 35:1213–1218

    CAS  Google Scholar 

  • Arnott HJ (1981) An SEM [scanning electron microscopy] study of twinning in calcium oxalate crystals of plants [Diospyros virginiana]. Scan Electron Micros 1981:225–234

    Google Scholar 

  • Arnott HJ (1982) Three systems of biomineralization in plants with comments on the associated organic matrix. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin, pp 199–218

    Chapter  Google Scholar 

  • Arnott HJ, Pautard FGE (1970) Calcification in plants. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Springer, New York, pp 375–446

    Chapter  Google Scholar 

  • Arnott HJ, Pautard FGE, Steinfink H (1965) Structure of calcium oxalate monohydrate. Nature 208:1197–1198

    Article  CAS  Google Scholar 

  • Ayensu ES (1972) Anatomy of the monocotyledons: VI. Dioscoreales. Clarendon Press, Oxford

    Google Scholar 

  • Bouropoulos N, Weiner S, Addadi L (2001) Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chem Eur J 7:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Cailleau G, Aragno M, Verrecchia EP (2004) Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2:59–66

    Article  CAS  Google Scholar 

  • Bruni A, Dall’Olio G, Tosi B (1982) A study of the development of raphide-forming cells in Musa paradisiaca using fluorescence microscopy. New Phytol 92:581–587

    Article  Google Scholar 

  • Crowther A (2009) Re-viewing raphides: issues with the identification and interpretation of calcium oxalate crystals in microfossil assemblages. In: Fairbairn A, O’Connor S, Marwick B (eds) New Directions in Archaeological Science. Terra Australis, vol 28. ANU E-Press, Canberra, pp 105–118

    Google Scholar 

  • Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  PubMed  CAS  Google Scholar 

  • Frey A (1929) Calciumoxalat-monohydrat und trihydrat in der Pflanze. Eine physiologische Studie auf Grund der Phasenlehre. Vierteljahrschr Naturf Ges Zurich 70:1–65

    Google Scholar 

  • Frey-Wyssling A (1981) Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am J Bot 68:130–141

    Article  CAS  Google Scholar 

  • Goldblatt P, Henrich JE, Rudall P (1984) Occurrence of crystals in Iridaceae and allied families and their phylogenetic significance. Ann Mo Bot Gard 71:1013–1020

    Article  Google Scholar 

  • Hayat MA (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, New York

    Google Scholar 

  • Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 53–72

    Google Scholar 

  • Horner HT, Whitmoyer RE (1972) Raphide crystal cell development in leaves of Psychotria punctata (Rubiaceae). J Cell Sci 11:339–355

    PubMed  CAS  Google Scholar 

  • Horner HT, Kausch AP, Wagner BL (2000) Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Int J Plant Sci 161:861–868

    Article  CAS  Google Scholar 

  • Horner HT, Wanke S, Samain MS (2012) A comparison of leaf crystal macropatterns in the two sister genera Piper and Peperomia (Piperaceae). Am J Bot 99:983–997

    Article  PubMed  CAS  Google Scholar 

  • Kausch AP, Horner HT (1982) A comparison of calcium oxalate crystals isolated from callus cultures and their explant sources. Scan Electron Micros I:199–211

    Google Scholar 

  • Kausch AP, Horner HT (1983a) The development of mucilaginous raphide crystal idioblasts in young leaves of Typha angustifolia L. (Typhaceae). Am J Bot 70:691–705

    Article  Google Scholar 

  • Kausch AP, Horner HT (1983b) Development of syncytial raphide crystal idioblasts in the cortex of adventitious roots of Vanilla planifolia L. (Orchidiaceae). Scan Electron Micros II:893–903

    Google Scholar 

  • Kausch AP, Horner HT (1984a) Differentiation of raphide crystal idioblasts in isolated root cultures of Yucca torreyi (Agavaceae). Can J Bot 62:1474–1484

    Article  Google Scholar 

  • Kausch AP, Horner HT (1984b) Increased nuclear DNA content in raphide crystal idioblasts during development in Vanilla planifolia L. (Orchidaceae). Eur J Cell Biol 33:7–12

    PubMed  CAS  Google Scholar 

  • Kollbeck F, Goldschmidt V, Schroder R (1914) Ueber Whewellit. Beitr Kristallogr Miner 1:1914–1918

    Google Scholar 

  • Kostman TA, Franceschi VR (2000) Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma 214:166–179

    Article  CAS  Google Scholar 

  • Lampe KF, Fagerström R (1968) Plant toxicity and dermatitis: a manual for physicians. Williams & Wilkins, Baltimore

    Google Scholar 

  • Lersten NR, Horner HT (2000) Calcium oxalate crystal types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol 224:83–96

    Article  CAS  Google Scholar 

  • Lersten NR, Horner HT (2011) Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot 98:1–11

    Article  PubMed  Google Scholar 

  • McNair JB (1932) The intersection between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot 19:255–271

    Article  CAS  Google Scholar 

  • Metcalfe CR, Chalk L (1957) Anatomy of the dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Mollenhauer H, Larson D (1966) Developmental changes in raphide-forming cells of Vanilla planifolia and Monstera deliciosa. J Ultrastruct Res 16:55–70

    Article  PubMed  CAS  Google Scholar 

  • Monje PV, Baran EJ (2002) Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol 128:707–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  CAS  Google Scholar 

  • Okoli BE, Green BO (1987) Histochemical localization of calcium oxalate crystals in starch grains of yams (Dioscorea). Ann Bot Lond 60:391–394

    Google Scholar 

  • Parameswaran N, Schultze R (1974) Fine structure of chambered crystalliferous cells in the bark of Acacia senegal. Z Pflanzenphysiol 71:90–93

    Article  Google Scholar 

  • Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot Lond 84:725–739

    Article  CAS  Google Scholar 

  • Raman V, Galal AM, Avula B, Sagi S, Smillie TJ, Khan IA (2014) Application of anatomy and HPTLC in characterizing species of Dioscorea (Dioscoreaceae). J Nat Med. doi:10.1007/s11418-014-0849-5

  • Rudall P (1994) Anatomy and systematics of Iridaceae. Bot J Linn Soc 114:1–21

    Article  Google Scholar 

  • Rudall P (1995) Iridaceae. In: Cutler DF, Gregory M (eds) Anatomy of the monocotyledons, vol VIII. Oxford University Press, Oxford

  • Sakai WS, Hanson M (1974) Mature raphid and raphid idioblast structure in plants of the edible aroid genera Colocasia, Alocasia, and Xanthosoma. Ann Bot Lond 38:739–748

    Google Scholar 

  • Svoma E, Greilhuber J (1988) Studies on systematic embryology in Scilla (Hyacinthaceae). Plant Syst Evol 161:169–181

    Article  Google Scholar 

  • Tilton VR, Horner HT (1980) Calcium oxalate raphide crystals and crystalliferous idioblasts in the carpels of Ornithogalum caudatum. Ann Bot Lond 46:533–539

    Google Scholar 

  • Wattendorff J (1976) A third type of raphide crystal in the plant kingdom: six-sided raphides with laminated sheaths in Agave americana L. Planta 130:303–311

    Article  PubMed  CAS  Google Scholar 

  • Wattendorff J (1978) Ultrastructure and development of the calcium oxalate crystal cells with suberin-like crystal sheaths in the bark and secondary xylem of Acacia senegal Willd. Protoplasma 95:193–206

    Article  CAS  Google Scholar 

  • Wu QG, Cutler D (1985) Taxonomic, evolutionary and ecological implications of the leaf anatomy of rhizomatous Iris species. Bot J Linn Soc 90:253–303

    Article  Google Scholar 

  • Zindler-Frank E (1976) Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity—a survey. Z Pflanzenphysiol 80:1–13

    Article  CAS  Google Scholar 

  • Zindler-Frank E (1987) Calcium oxalate crystals in legumes. In: Stirton E (ed) Advances in legume systematics, part 3. Royal Botanic Gardens, Kew, pp 279–316

    Google Scholar 

Download references

Acknowledgments

This study was supported by Grant Number P50AT006268 from the National Center for Complementary and Alternative Medicines (NCCAM), the Office of Dietary Supplements (ODS) and the National Cancer Institute (NCI), and by partial support from the United States Food and Drug Administration (FDA) Specific Cooperative Research Agreement number U01 FD004246-01. We thank Ahmed M. Galal and Amar Chittiboyina of National Center for Natural Products Research, University of Mississippi, MS for helpful suggestions; and Rooban Thirumalai and Amanda Lawrence of Institute for Imaging and Analytical Technologies (I2AT), Mississippi State University, MS for help in FE-SEM imaging and elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhlas A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, V., Horner, H.T. & Khan, I.A. New and unusual forms of calcium oxalate raphide crystals in the plant kingdom. J Plant Res 127, 721–730 (2014). https://doi.org/10.1007/s10265-014-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0654-y

Keywords

Navigation