Skip to main content

Advertisement

Log in

Modulation of renal sympathetic innervation: recent insights beyond blood pressure control

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Renal afferent and efferent sympathetic nerves are involved in the regulation of blood pressure and have a pathophysiological role in hypertension. Additionally, several conditions that frequently coexist with hypertension, such as heart failure, obstructive sleep apnea, atrial fibrillation, renal dysfunction, and metabolic syndrome, demonstrate enhanced sympathetic activity. Renal denervation (RDN) is an approach to reduce renal and whole body sympathetic activation. Experimental models indicate that RDN has the potential to lower blood pressure and prevent cardio-renal remodeling in chronic diseases associated with enhanced sympathetic activation. Studies have shown that RDN can reduce blood pressure in drug-naïve hypertensive patients and in hypertensive patients under drug treatment. Beyond its effects on blood pressure, sympathetic modulation by RDN has been shown to have profound effects on cardiac electrophysiology and cardiac arrhythmogenesis. RDN can display anti-arrhythmic effects in a variety of animal models for atrial fibrillation and ventricular arrhythmias. The first non-randomized studies demonstrate that RDN may promote the maintenance of sinus rhythm following catheter ablation in patients with atrial fibrillation. Registry data point towards a beneficial effect of RDN to prevent ventricular arrhythmias in patients with heart failure and electrical storm. Further large randomized placebo-controlled trials are needed to confirm the antihypertensive and anti-arrhythmic effects of RDN. Here, we will review the current literature on anti-arrhythmic effects of RDN with the focus on atrial fibrillation and ventricular arrhythmias. We will discuss new insights from preclinical and clinical mechanistic studies and possible clinical implications of RDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    Article  PubMed  CAS  Google Scholar 

  2. Böhm M, Linz D, Ukena C, Esler M, Mahfoud F (2014) Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ Res 115:400–409

    Article  PubMed  CAS  Google Scholar 

  3. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie FD, Virmani R, Joner M (2014) Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 64:635–643

    Article  PubMed  Google Scholar 

  4. Stella A, Zanchetti A (1991) Functional role of renal afferents. Physiol Rev 71:659–682

    Article  PubMed  CAS  Google Scholar 

  5. Bradley T, Hjemdahl P (1986) Influence of afferent renal nerve activity on contralateral renal overflow of noradrenaline and dopamine to plasma in the dog. Acta Physiol Scand 128:119–120

    Article  PubMed  CAS  Google Scholar 

  6. Larsen R, Thorp A, Schlaich M (2014) Regulation of the sympathetic nervous system by the kidney. Curr Opin Nephrol Hypertens 23:61–68

    Article  PubMed  Google Scholar 

  7. Patel KP, Knuepfer MM (1986) Effect of afferent renal nerve stimulation on blood pressure, heart rate and noradrenergic activity in conscious rats. J Auton Nerv Syst 17:121–130

    Article  PubMed  CAS  Google Scholar 

  8. Rogenes PR (1982) Single-unit and multiunit analyses of renorenal reflexes elicited by stimulation of renal chemoreceptors in the rat. J Auton Nerv Syst 6:143–156

    Article  PubMed  CAS  Google Scholar 

  9. Linz D, Hohl M, Schütze J, Mahfoud F, Speer T, Linz B, Hübschle T, Juretschke HP, Dechend R, Geisel J, Rütten H, Böhm M (2015) Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens 28:256–265

    Article  PubMed  CAS  Google Scholar 

  10. Mahfoud F, Moon LB, Pipenhagen CA, Jensen JA, Pathak A, Papademetriou V, Ewen S, Linz D, Böhm M (2016) Catheter-based radio-frequency renal nerve denervation lowers blood pressure in obese hypertensive swine model. J Hypertens 34:1854–1862

    Article  PubMed  CAS  Google Scholar 

  11. Hohl M, Linz D, Fries P, Müller A, Stroeder J, Urban D, Speer T, Geisel J, Hummel B, Laufs U, Schirmer SH, Böhm M, Mahfoud F (2016) Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med. 14:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Foss JD, Fink GD, Osborn JW (2016) Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am J Physiol Regul Integr Comp Physiol 310:R262–267

    Article  PubMed  Google Scholar 

  13. Osborn JW, Foss JD (2017) Renal nerves and long-term control of arterial pressure. Compr Physiol. 7:263–320

    Article  PubMed  Google Scholar 

  14. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  15. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE (2010) Böhm M for the Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  PubMed  Google Scholar 

  16. Böhm M, Ukena C, Ewen S, Linz D, Zivanovic I, Hoppe U, Narkiewicz K, Ruilope L, Schlaich M, Negoita M, Schmieder R, Williams B, Zeymer U, Zirlik A, Mancia G, Mahfoud F (2016) Global SYMPLICITY registry investigators. Renal denervation reduces office and ambulatory heart rate in patients with uncontrolled hypertension: 12-month outcomes from the global SYMPLICITY registry. J Hypertens 34:2480–2486

    Article  PubMed  CAS  Google Scholar 

  17. Linz D, Mancia G, Mahfoud F, Narkiewicz K, Ruilope L, Schlaich M, Kindermann I, Schmieder RE, Ewen S, Williams B, Böhm M (2017) Global SYMPLICITY Registry Investigators. Renal artery denervation for treatment of patients with self-reported obstructive sleep apnea and resistant hypertension: results from the Global SYMPLICITY Registry. J Hypertens 35:148–153

    Article  PubMed  CAS  Google Scholar 

  18. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, Fries P, Dreysse S, Wellnhofer E, Schneider G, Buecker A, Schneeweis C, Doltra A, Schlaich MP, Esler MD, Fleck E, Böhm M, Kelle S (2014) Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J 35:2224–2231

    Article  PubMed  Google Scholar 

  19. Schirmer SH, Sayed MM, Reil JC, Ukena C, Linz D, Kindermann M, Laufs U, Mahfoud F, Böhm M (2014) Improvements of left-ventricular hypertrophy and diastolic function following renal denervation—Effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol 63:1916–1923

    Article  PubMed  Google Scholar 

  20. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL (2014) SYMPLICITY HTN-3 investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401

    Article  PubMed  CAS  Google Scholar 

  21. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M (2017) Böhm M; SPYRAL HTN-OFF MED trial investigators*. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. https://doi.org/10.1016/S0140-6736(17)32281-X

    Article  PubMed  Google Scholar 

  22. Linz D, Ukena C, Mahfoud F, Neuberger HR, Böhm M (2014) Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? J Am Coll Cardiol 63:215–224

    Article  PubMed  Google Scholar 

  23. Linz D, van Hunnik A, Ukena C, Ewen S, Mahfoud F, Schirmer SH, Lenski M, Neuberger HR, Schotten U, Böhm M (2014) Renal denervation: effects on atrial electrophysiology and arrhythmias. Clin Res Cardiol 103:765–774

    Article  PubMed  Google Scholar 

  24. Ripplinger CM, Noujaim SF, Linz D (2016) The nervous heart. Prog Biophys Mol Biol 120:199–209

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jayachandran JV, Sih HJ, Winkle W, Zipes DP, Hutchins GD, Olgin JE (2000) Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 101:1185–1191

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, Luo H, Siegel RJ, Karagueuzian HS, Chen LS, Lin SF, Chen PS (2007) Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol 50:335–343

    Article  PubMed  Google Scholar 

  27. Kühlkamp V, Schirdewan A, Stangl K, Homberg M, Ploch M, Beck OA (2000) Use of metoprolol CR/XL to maintain sinus rhythm after conversion from persistent atrial fibrillation: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 36:139–146

    Article  PubMed  Google Scholar 

  28. Linz D, Hohl M, Khoshkish S, Mahfoud F, Ukena C, Neuberger HR, Wirth K, Böhm M (2016) Low-level but not high-level baroreceptor stimulation inhibits atrial fibrillation in a pig model of sleep apnea. J Cardiovasc Electrophysiol 27:1086–1092

    Article  PubMed  Google Scholar 

  29. Oliver JA, Pinto J, Sciacca RR, Cannon PJ (1980) Basal norepinephrine overflow into the renal vein: effect of renal nerve stimulation. Am J Physiol 239:F371–F377

    PubMed  CAS  Google Scholar 

  30. Mulder J, Hökfelt T, Knuepfer MM, Kopp UC (2013) Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol 304:R675–682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pinkham MI, Loftus MT, Amirapu S, Guild SJ, Quill G, Woodward WR, Habecker BA, Barrett CJ (2017) Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function. Am J Physiol Regul Integr Comp Physiol 312:R368–R379

    Article  PubMed  PubMed Central  Google Scholar 

  32. Linz D, van Hunnik A, Hohl M, Mahfoud F, Wolf M, Neuberger HR, Casadei B, Reilly SN, Verheule S, Böhm M, Schotten U (2015) Catheter-based renal denervation reduces atrial nerve sprouting and complexity of atrial fibrillation in goats. Circ Arrhythm Electrophysiol. 8:466–474

    Article  PubMed  Google Scholar 

  33. Wang X, Zhao Q, Huang H, Tang Y, Xiao J, Dai Z, Yu S, Huang C (2013) Effect of renal sympathetic denervation on atrial substrate remodeling in ambulatory canines with prolonged atrial pacing. PLoS ONE 8:e64611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Huang B, Yu L, Scherlag BJ, Wang S, He B, Yang K, Liao K, Lu Z, He W, Zhang L, Po SS, Jiang H (2014) Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion. J Cardiovasc Electrophysiol 25:1249–1256

    Article  PubMed  Google Scholar 

  35. Yu L, Huang B, Wang Z, Wang S, Wang M, Li X, Zhou L, Meng G, Yuan S, Zhou X, Jiang H (2017) impacts of renal sympathetic activation on atrial fibrillation: the potential role of the autonomic cross talk between kidney and heart. J Am Heart Assoc 6:e004716

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsai WC, Chan YH, Chinda K, Chen Z, Patel J, Shen C, Zhao Y, Jiang Z, Yuan Y, Ye M, Chen LS, Riley AA, Persohn SA, Territo PR, Everett TH, Lin SF, Vinters HV, Fishbein MC, Chen PS (2017) Effects of renal sympathetic denervation on the stellate ganglion and brain stem in dogs. Heart Rhythm 14:255–262

    Article  PubMed  Google Scholar 

  37. Tsai WC, Chan YH, Chinda K, Lai WT, Lin SF, Chen PS (2014) Renal sympathetic denervation decreases the incidence of atrial tachycardia and improves baroreflex sensitivity in ambulatory dogs. Heart Rhythm 11:236

    Google Scholar 

  38. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP (2013) Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61:457–464

    Article  PubMed  CAS  Google Scholar 

  39. Berukstis A, Vajauskas D, Gargalskaite U, Misonis N, Burneikaite G, Zakarkaite D, Miglinas M, Laucevicius A (2016) Impact of renal sympathetic denervation on cardiac sympathetic nerve activity evaluated by cardiac MIBG imaging. EuroIntervention 11:1070–1076

    Article  PubMed  Google Scholar 

  40. Donazzan L, Mahfoud F, Ewen S, Ukena C, Cremers B, Kirsch CM, Hellwig D, Eweiwi T, Ezziddin S, Esler M, Böhm M (2016) Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol 105:364–371

    Article  PubMed  Google Scholar 

  41. Mahfoud F, Schmieder RE, Azizi M, Pathak A, Sievert H, Tsioufis C, Zeller T, Bertog S, Blankestijn PJ, Böhm M, Burnier M, Chatellier G, Durand Zaleski I, Ewen S, Grassi G, Joner M, Kjeldsen SE, Lobo MD, Lotan C, Felix Lüscher T, Parati G, Rossignol P, Ruilope L, Sharif F, van Leeuwen E, Volpe M, Windecker S, Witkowski A, Wijns W (2017) Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx215

    Article  PubMed Central  PubMed  Google Scholar 

  42. Dörr O, Ewen S, Liebetrau C, Möllmann H, Gaede L, Linz D, Hohl M, Troidl C, Bauer T, Böhm M, Hamm C, Mahfoud F, Nef H (2015) Neuropeptide Y as an indicator of successful alterations in sympathetic nervous activity after renal sympathetic denervation. Clin Res Cardiol 104:1064–1071

    Article  PubMed  CAS  Google Scholar 

  43. de Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, van Hasselt BA, Lau EO, Persu A, Staessen JA, Ramdat Misier AR, Steinberg JS, Elvan A (2016) Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 68:707–714

    Article  PubMed  CAS  Google Scholar 

  44. Chinushi M, Suzuki K, Saitoh O, Furushima H, Iijima K, Izumi D, Sato A, Sugai M, Iwafuchi M (2016) Electrical stimulation-based evaluation for functional modification of renal autonomic nerve activities induced by catheter ablation. Heart Rhythm 13:1707–1715

    Article  PubMed  Google Scholar 

  45. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, Linz D, Davies J, Kandzari DE, Whitbourn R, Böhm M, Melder RJ (2015) Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol 66:1766–1775

    Article  PubMed  Google Scholar 

  46. Stocker SD, Muntzel MS (2013) Recording sympathetic nerve activity chronically in rats: surgery techniques, assessment of nerve activity, and quantification. Am J Physiol Heart Circ Physiol 305:H1407–1416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hamza SM, Hall JE (2012) Direct recording of renal sympathetic nerve activity in unrestrained, conscious mice. Hypertension 60:856–864

    Article  PubMed  CAS  Google Scholar 

  48. Barber-Chamoux N, Esler MD (2017) Predictive factors for successful renal denervation: should we use them in clinical trials. Eur J Clin Invest. https://doi.org/10.1111/eci.12792

    Article  PubMed  Google Scholar 

  49. Linz D, Hunnik Av, Ukena C, Mahfoud F, Ewen S, Verheule S, Böhm M, Schotten U (2014) Effects of renal denervation on atrial arrhythmogenesis. Future Cardiol 10:813–822

    Article  PubMed  CAS  Google Scholar 

  50. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, Wirth K, Böhm M (2013) Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension 61:225–231

    Article  PubMed  CAS  Google Scholar 

  51. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Böhm M (2012) Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 60:172–178

    Article  PubMed  CAS  Google Scholar 

  52. Hou Y, Hu J, Po SS, Wang H, Zhang L, Zhang F, Wang K, Zhou Q (2013) Catheter-based renal sympathetic denervation significantly inhibits atrial fibrillation induced by electrical stimulation of the left stellate ganglion and rapid atrial pacing. PLoS ONE 8:e78218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhou Q, Zhou X, TuEr-Hong ZL, Wang H, Yin T, Li Y, Zhang L, Lu Y, Xing Q, Zhang J, Yang Y, Tang B (2016) Renal sympathetic denervation suppresses atrial fibrillation induced by acute atrial ischemia/infarction through inhibition of cardiac sympathetic activity. Int J Cardiol 203:187–195

    Article  PubMed  Google Scholar 

  54. Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K (2011) Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 8:1436–1443

    Article  PubMed  Google Scholar 

  55. Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K (2011) Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea. Heart Rhythm. 8:1933–1939

    Article  PubMed  Google Scholar 

  56. Linz D, Hohl M, Nickel A, Mahfoud F, Wagner M, Ewen S, Schotten U, Maack C, Wirth K, Böhm M (2013) Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension 62:767–774

    Article  PubMed  CAS  Google Scholar 

  57. Liang Z, Shi XM, Liu LF, Chen XP, Shan ZL, Lin K, Li J, Chen FK, Li YG, Guo HY, Wang YT (2015) Renal denervation suppresses atrial fibrillation in a model of renal impairment. PLoS ONE 10:e0124123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang X, Zhao Q, Deng H, Wang X, Guo Z, Dai Z, Xiao J, Wan P, Huang C (2014) Effects of renal sympathetic denervation on the atrial electrophysiology in dogs with pacing-induced heart failure. Pacing Clin Electrophysiol 37:1357–1366

    Article  PubMed  Google Scholar 

  59. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, Laufs U, Neuberger HR, Böhm M (2013) Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol 167:2846–2851

    Article  PubMed  Google Scholar 

  60. Qiu M, Shan Q, Chen C, Geng J, Guo J, Zhou X, Qian W, Tang L, Yin Y (2016) Renal sympathetic denervation improves rate control in patients with symptomatic persistent atrial fibrillation and hypertension. Acta Cardiol 71:67–73

    Article  PubMed  Google Scholar 

  61. Schirmer SH, Sayed MM, Reil JC, Lavall D, Ukena C, Linz D, Mahfoud F, Böhm M (2015) Atrial remodeling following catheter-based renal denervation occurs in a blood pressure-and heart rate-independent manner. JACC Cardiovasc Interv 8:972–980

    Article  PubMed  Google Scholar 

  62. McLellan AJ, Schlaich MP, Taylor AJ, Prabhu S, Hering D, Hammond L, Marusic P, Duval J, Sata Y, Ellims A, Esler M, Peter K, Shaw J, Walton A, Kalman JM, Kistler PM (2015) Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm 12:982–990

    Article  PubMed  Google Scholar 

  63. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS (2012) A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 60:1163–1170

    Article  PubMed  Google Scholar 

  64. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Bayramova S, Losik D, Baranova V, Karaskov A, Steinberg JS (2014) Renal denervation for improving outcomes of catheter ablation in patients with atrial fibrillation and hypertension: early experience. Heart Rhythm 11:1131–1138

    Article  PubMed  Google Scholar 

  65. Romanov A, Pokushalov E, Ponomarev D, Strelnikov A, Shabanov V, Losik D, Karaskov A, Steinberg JS (2017) Pulmonary vein isolation with concomitant renal artery denervation is associated with reduction of both arterial blood pressure and atrial fibrillation burden: data from implantable cardiac monitor. Cardiovasc Ther. https://doi.org/10.1111/1755-5922.12264

    Article  PubMed  Google Scholar 

  66. Kiuchi MG, Chen S (2017) E Silva GR, Rodrigues Paz LM, Kiuchi T, de Paula Filho AG, Lima Souto GL. The addition of renal sympathetic denervation to pulmonary vein isolation reduces recurrence of paroxysmal atrial fibrillation in chronic kidney disease patients. J Interv Card Electrophysiol 48:215–222

    Article  PubMed  Google Scholar 

  67. Vollmann D, Sossalla S, Schroeter MR, Zabel M (2013) Renal artery ablation instead of pulmonary vein ablation in a hypertensive patient with symptomatic, drug-resistant, persistent atrial fibrillation. Clin Res Cardiol 102:315–318

    Article  PubMed  Google Scholar 

  68. Linz D, Wirth K, Ukena C, Mahfoud F, Pöss J, Linz B, Böhm M, Neuberger HR (2013) Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm 10:1525–1530

    Article  PubMed  Google Scholar 

  69. Huang B, Yu L, He B, Lu Z, Wang S, He W, Yang K, Liao K, Zhang L, Jiang H (2014) Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemia-induced ventricular arrhythmia. Exp Physiol 99:1467–1477

    Article  PubMed  Google Scholar 

  70. Jackson N, Gizurarson S, Azam MA, King B, Ramadeen A, Zamiri N, Porta-Sánchez A, Al-Hesayen A, Graham J, Kusha M, Massé S, Lai PF, Parker J, John R, Kiehl TR, Nair GK, Dorian P, Nanthakumar K (2017) Effects of renal artery denervation on ventricular arrhythmias in a postinfarct model. Circ Cardiovasc Interv 10:e004172

    Article  PubMed  CAS  Google Scholar 

  71. Chang S-N, Chang S-H, Yu CC et al (2017) Renal denervation decreases susceptibility to arrhythmogenic cardiac alternans and ventricular arrhythmia in a rat model of post–myocardial infarction heart failure. J Am Coll Cardiol Basic Trans Sci 2:184–193

    Google Scholar 

  72. Guo Z, Zhao Q, Deng H, Tang Y, Wang X, Dai Z, Xiao J, Wan P, Wang X, Huang H, Huang C (2014) Renal sympathetic denervation attenuates the ventricular substrate and electrophysiological remodeling in dogs with pacing-induced heart failure. Int J Cardiol 175:185–186

    Article  PubMed  Google Scholar 

  73. Dai Z, Yu S, Zhao Q, Meng Y, He H, Tang Y, Wang X, Xiao J, Wang X, Huang C (2014) Renal sympathetic denervation suppresses ventricular substrate remodelling in a canine high-rate pacing model. EuroIntervention 10:392–399

    Article  PubMed  Google Scholar 

  74. Yamada S, Lo LW, Chou YH, Lin WL, Chang SL, Lin YJ, Liu SH, Cheng WH, Tsai TY, Chen SA (2017) Beneficial effect of renal denervation on ventricular premature complex induced cardiomyopathy. J Am Heart Assoc 6:e004479

    Article  PubMed  PubMed Central  Google Scholar 

  75. Linz D, Denner A, Illing S, Hohl M, Ukena C, Mahfoud F, Ewen S, Reil JC, Wirth K, Böhm M (2016) Impact of obstructive and central apneas on ventricular repolarisation: lessons learned from studies in man and pigs. Clin Res Cardiol 105:639–647

    Article  PubMed  Google Scholar 

  76. Yu L, Huang B, Zhou X, Wang S, Wang Z, Wang M, Li X, Zhou L, Meng G, Yuan S, Wang Y, Jiang H (2017) Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm 14:912–919

    Article  PubMed  Google Scholar 

  77. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  PubMed  CAS  Google Scholar 

  78. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  PubMed  CAS  Google Scholar 

  79. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B (2005) Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 26:906–913

    Article  PubMed  Google Scholar 

  80. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Böhm M (2012) Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 101:63–67

    Article  PubMed  Google Scholar 

  81. Armaganijan LV, Staico R, Moreira DA, Lopes RD, Medeiros PT, Habib R, Melo Neto J, Katz M, Armaganijan D, Sousa AG, Mahfoud F, Abizaid A (2015) 6-month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. JACC Cardiovasc Interv 8:984–990

    Article  PubMed  Google Scholar 

  82. Remo BF, Preminger M, Bradfield J, Mittal S, Boyle N, Gupta A, Shivkumar K, Steinberg JS, Dickfeld T (2014) Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm 11:541–546

    Article  PubMed  Google Scholar 

  83. Ukena C, Mahfoud F, Ewen S, Bollmann A, Hindricks G, Hoffmann BA, Linz D, Musat D, Pavlicek V, Scholz E, Thomas D, Willems S, Böhm M, Steinberg JS (2016) Renal denervation for treatment of ventricular arrhythmias: data from an International Multicenter Registry. Clin Res Cardiol 105:873–879

    Article  PubMed  CAS  Google Scholar 

  84. Hopper I, Gronda E, Hoppe UC, Rundqvist B, Marwick TH, Shetty S, Hayward C, Lambert T, Hering D, Esler M, Schlaich M, Walton A, Airoldi F, Brandt MC, Cohen SA, Reiters P, Krum H (2017) Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the symplicityhf feasibility study. J Card Fail. https://doi.org/10.1016/j.cardfail.2017.06.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Linz.

Ethics declarations

Conflict of interest

DL, FM, PS and MB received research grants, speaker honoraria, and consultancy fees from Medtronic/Ardian, St. Jude, Boston Scientific, and Cordis. The other authors report no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linz, D., Hohl, M., Elliott, A.D. et al. Modulation of renal sympathetic innervation: recent insights beyond blood pressure control. Clin Auton Res 28, 375–384 (2018). https://doi.org/10.1007/s10286-018-0508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-018-0508-0

Keywords

Navigation