Skip to main content
Log in

Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

We show that the transformation of benzene into phenol is a more selective probe for the hydroxyl radical than the transformation of nitrobenzene or the generation of 4-hydroxybenzoic acid from benzoic acid. The benzene to phenol system showed adequate performance as a probe upon irradiation of lake water samples and humic acids. We show that the use of nitrobenzene and benzoic acid as hydroxyl probes should be avoided because of poor selectivity. Moreover, all the tested probe molecules underwent important interference by irradiated antraquinone-2-sulphonate, and considerably overestimated the formation of the hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boule P, Bahnemann DW, Robertson PKJ (2005) The handbook of environmental chemistry, vol 2M (Environmental photochemistry, part II). Springer, Berlin

  • Brigante M, DellaGreca M, Previtera L, Rubino M, Temussi F (2005) Degradation of hydrochlorothiazide in water. Environ Chem Lett 2:195–198. doi:10.1007/s10311-004-0096-1

    Article  CAS  Google Scholar 

  • Canonica S, Freiburghaus M (2001) Electron-rich phenols to probe the photochemical reactivity of freshwaters. Environ Sci Technol 35:690–695. doi:10.1021/es0011360

    Article  CAS  Google Scholar 

  • Canonica S, Hellrung B, Müller P, Wirz J (2006) Aqueous oxidation of phenylurea herbicides by triplet aromatic ketones. Environ Sci Technol 40:6636–6641. doi:10.1021/es0611238

    Article  CAS  Google Scholar 

  • Fenner K, Canonica S, Escher BI, Gasser L, Spycher S, Tulp HC (2006) Developing methods to predict chemical fate and effect endpoints for use within REACH. Chimia (Aarau) 60:683–690. doi:10.2533/chimia.2006.683

    Article  CAS  Google Scholar 

  • Halladja S, Ter Halle A, Aguer JP, Boulkamh A, Richard C (2007) Inhibition of humic substances mediated photooxigenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environ Sci Technol 41:6066–6073. doi:10.1021/es070656t

    Article  CAS  Google Scholar 

  • Hoigné J (1990) Formulation and calibration of environmental reaction kinetics: Oxidation by aqueous photooxidants as an example. In: Stumm W (ed) Aquatic chemical kinetics. Wiley, New York, pp 43–70

    Google Scholar 

  • Lam MW, Mabury SA (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat Sci 67:177–188. doi:10.1007/s00027-004-0768-8

    Article  CAS  Google Scholar 

  • Lindsey EM, Tarr MA (2000) Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41:409–417. doi:10.1016/S0045-6535(99)00296-9

    Article  CAS  Google Scholar 

  • Maurino V, Borghesi D, Vione D, Minero C (2008) Transformation of phenolic compounds upon UVA irradiation of antraquinone-2-sulfonate. Photochem Photobiol Sci 7:321–327. doi:10.1039/b709331d

    Article  CAS  Google Scholar 

  • Minero C, Chiron S, Falletti G, Maurino V, Pelizzetti E, Ajassa R, Carlotti ME, Vione D (2007) Photochemical processes involving nitrite in surface water samples. Aquat Sci 69:71–85. doi:10.1007/s00027-007-0881-6

    Article  CAS  Google Scholar 

  • Rafqah S, Mailhot G, Sarakha M (2006) Highly efficient photodegradation of the pesticide metolcarb induced by Fe complexes. Environ Chem Lett 4:213–217. doi:10.1007/s10311-006-0049-y

    Article  CAS  Google Scholar 

  • Vialaton D, Richard C (2002) Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions. Aquat Sci 64:207–215. doi:10.1007/s00027-002-8068-7

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003) New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Environ Sci Technol 37:4635–4641. doi:10.1021/es0300259

    Article  CAS  Google Scholar 

  • Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Ajassa R, Olariu RI, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40:3775–3781. doi:10.1021/es052206b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from INCA Inter-University Consortium, PNRA, Progetto Antartide, and Università di Torino, Ricerca locale, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Vione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vione, D., Ponzo, M., Bagnus, D. et al. Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution. Environ Chem Lett 8, 95–100 (2010). https://doi.org/10.1007/s10311-008-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-008-0197-3

Keywords

Navigation