Skip to main content

Advertisement

Log in

Nanotechnology applications in pollution sensing and degradation in agriculture: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

With the rise in the global population, the demand for increased supply of food has motivated scientists and engineers to design new methods to boost agricultural production. With limited availability of land and water resources, growth in agriculture can be achieved only by increasing productivity through good agronomy and supporting it with an effective use of modern technology. Advanced agronomical methods lay stress not only on boosting agricultural produce through use of more effective fertilizers and pesticides, but also on the hygienic storage of agricultural produce. The detrimental effects of modern agricultural methods on the ecosystem have raised serious concerns amongst environmentalists. The widespread use of persistent pesticides globally over the last six decades has contaminated groundwater and soil, resulting in diseases and hardships in non-target species such as humans and animals. The first step in the removal of disease causing microbes from food products or harmful contaminants from soil and groundwater is the effective detection of these damaging elements. Nanotechnology offers a lot of promise in the area of pollution sensing and prevention, by exploiting novel properties of nanomaterials. Nanotechnology can augment agricultural production and boost food processing industry through applications of these unique properties. Nanosensors are capable of detecting microbes, humidity and toxic pollutants at very minute levels. Organic pesticides and industrial pollutants can be degraded into harmless and often useful components, through a process called photocatalysis using metal oxide semiconductor nanostructures. Nanotechnology is gradually moving out from the experimental into the practical regime and is making its presence felt in agriculture and the food processing industry. Here we review the contributions of nanotechnology to the sensing and degradation of pollutants for improved agricultural production with sustainable environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.industrial-nanotech.com downloaded on 15.1.08.

Abbreviations

SPR:

Surface plasmon resonance

DNA:

Deoxyribonucleic acid

Psi:

Porous silicon

TFT:

Thin-film transistor

VP:

Vibrio parahaemolyticus

SPE:

Screen-printed electrode

HRP:

Horseradish peroxidase

VOC:

Volatile organic compound

OP:

Organic pollutant

OA :

Organic anion

OC+ :

Organic cation

NHE:

Normal hydrogen electrode

RUP:

Restricted-use pesticide

References

  • Alarie JP, Bowyer DJ, Sepaniak MJ, Hoyt AM, VO-Dinh T (1990) Fluorescence monitoring of a benzo(a)pyrene metabolite using a regenerable immuno chemical-based fiberoptic sensor. Anal Chim Acta 236:237

    Article  CAS  Google Scholar 

  • Anderson MA, Tinsley-Brown A, Allcock P, Perkins EA, Snow P, Hollings M, Smith RG, Reeves C, Squirrell DJ, Nicklin S, Cox TI (2003) Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores. Phys Stat Sol A 197(2):528–533. doi:10.1002/pssa.200306558

    Article  CAS  Google Scholar 

  • Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK, Drechsler U, Rothuizen H, Despont M, Vettiger P, Battiston FM, Ramseyer JP, Fornaro P, Meyer E, Guntherodt HJ (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1

    Article  CAS  Google Scholar 

  • Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of aldrin. Catal Today 76:189–199. doi:10.1016/S0920-5861(02)00218-3

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(013001):18

    Google Scholar 

  • Baruah S, Rafique RF, Dutta J (2008) Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures, NANO: Brief Rep Rev 3(5):399

    CAS  Google Scholar 

  • Baruah S, Warad HC, Chindaduang A, Tumcharern G, Dutta J (2008b) Studies on chitosan-stabilised Zns:Mn2+ nanoparticles. J Bionanosci 2:42

    Article  Google Scholar 

  • Baruah S, Sinha SS, Ghosh B, Pal SK, Raychaudhuri AK, Dutta J (2009) Photo-reactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308

    Article  Google Scholar 

  • Boer KW (1990) Survey of semiconductor physics. Springer

  • Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  • Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Tech J 32(1):1

    Article  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344

    Article  CAS  Google Scholar 

  • Cao Y, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  CAS  Google Scholar 

  • Carrascosa LG, Moreno M, Alvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. Trends Anal Chem 25(3):196. doi:10.1016/j.trac.2005.09.006

    Article  CAS  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chaudhry Q, Schroeder P, Werck-Reichhart D, Grajek W, Marecik R (2008) Prospects and Limitations of Phytoremediation for the Removal of Persistent Pesticides in the Environment. Env Sci Pollut Res. doi:10.1065/espr2001.09.084.1

  • Chen HD, Weiss JC, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60:30–36

    CAS  Google Scholar 

  • Clark L, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29. doi:10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  • Colis S, Bieber H, Bégin-Colin S, Schmerber G, Leuvrey C, Dinia A (2006) Magnetic properties of Co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis. Chem Phys Lett 422:529

    Article  CAS  Google Scholar 

  • De Stefano L, Moretti L, Rendina I, Rotiroti L (2005) Pesticides detection in water and humic solutions using porous silicon technology. Sens Actuators B 111–112:522–525. doi:10.1016/j.snb.2005.03.047

    Article  Google Scholar 

  • Dejneka MJ, Streltsov A, Pal S, Frutos AG, Powell CL, Yost K, Yuen PK, Muller U, Lahiri J (2003) Rare earth-doped glass microbarcodes. PNAS 100:389–393

    Article  CAS  Google Scholar 

  • Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci 29:111. doi:10.1080/10408430490888977

    Article  CAS  Google Scholar 

  • Estrela P, Stewart AG, Yan F, Migliorato P (2005) Field effect detection of biomolecular interactions. Electrochim Acta 50:4995–5000. doi:10.1016/j.electacta.2005.02.075

    Article  CAS  Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59:81–89. doi:10.1016/j.apcatb.2005.01.005

    Article  CAS  Google Scholar 

  • Faglia G, Nelli P, Sberveglieri G (1994) Frequency effect on highly sensitive NO2 sensors based on Rgto SNO2(al). Sens Actuators B Chem 19:497

    Article  CAS  Google Scholar 

  • Feynman RP (1960) There's plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 37:28. doi:10.1038/238037a0

    Google Scholar 

  • Gratzel M (1989) Heterogeneous photochemical electron transfer. CRC Press, Boca Raton

    Google Scholar 

  • Guo G, Liu W, Liang J, Xu H, He Z, Yang X (2006) Preparation and characterization of novel CdSe quantum dots modified with poly (d, l-lactide) nanoparticles. Mater Lett 60:2565–2568. doi:10.1016/j.matlet.2006.01.073

    Article  CAS  Google Scholar 

  • Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604. doi:10.1021/ja020393xS0002-7863(02)00393-1

    Article  CAS  Google Scholar 

  • Heilig A, Barsan N, Weimar U, Berberich MS, Gardner JW, Gopel W (1997) Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens Actuators B Chem 43:45

    Article  CAS  Google Scholar 

  • Hermann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115

    Article  Google Scholar 

  • Herrmann JM, Guillard C (2000) Photocatalytic degradation of pesticides in agricultural used waters. Surface Chem Catalysis 23:417

    Google Scholar 

  • Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles: known and unknown health risks. J Nanobiotechnol 2:12

    Article  Google Scholar 

  • Hofmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 6:9–96

    Google Scholar 

  • Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2009) Introduction to nanoscience and nanotechnology. CRC Press, Taylor & Francis Group, FL

    Google Scholar 

  • Hsieh YP, Ofori JA (2007) Innovations in food technology for health. Asia Pac J Clin Nutr 16(Suppl 1):65–73

    CAS  Google Scholar 

  • Ikariyama Y, Nishiguchi S, Kobatake E, Aizawa M, Tsuda M, Nakazawa T (1993) Luminescent biomonitoring of benzene derivatives in the environment using recombinant Escerichia coli. Sens Actuators B 13:169

    Article  CAS  Google Scholar 

  • Jackson T, Mansfield K, Saafi M, Colman T, Romine P (2007) Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41(4):381–390. doi:10.1016/j.measurement.2007.02.009

    Article  Google Scholar 

  • Ji HF, Thundat T (2002) In situ detection of calcium ions with chemically modified microcantilevers. Biosens Bioelectron 17:337

    Article  CAS  Google Scholar 

  • Jonda S, Fleischer M, Meixner H (1996) Temperature control of semiconductor metal-oxide gas sensors by means of fuzzy logic. Sens Actuators B34:396

    Article  Google Scholar 

  • Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology–biology interface. J Nanopart Res 9:165–182. doi:10.1007/s11051-006-9151-0

    Article  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229. doi:10.1063/1.1763252

    Article  CAS  Google Scholar 

  • Lhomme L, Brossilon S, Woolbert D (2007) Photocatalytic degradation of a triazole pesticide, cyproconazole, in water. J Photochem Photobiol 188:34–42

    Article  CAS  Google Scholar 

  • Madou M (1997) Fundamentals of microfabrication. CRC Press, New York

    Google Scholar 

  • Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143:240–245. doi:10.1016/j.jhazmat.2006.09.008

    Article  CAS  Google Scholar 

  • Malinsky MD, Kelly KL, Schatz GCVD, Richard P (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  • Mason WT (ed) (1992) Fluorescent and luminescent probes for biological activity. 2nd edn. Academic Press, London, pp 17–39

  • Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5(15):2335–2342

    Article  CAS  Google Scholar 

  • Mills A, Punte L, Stephan M (1997) An overview of semiconductor optocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Moraru CI, Panchapakesan CP, Huang QR, Takhistov P, Sean L, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57(12):24–29

    Google Scholar 

  • Munteanu F, Lindgren A, Emneus J, Gorton L, Ruzgas T, Ciucu A, Csörregi E (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70:2596

    Article  CAS  Google Scholar 

  • Nanto H, Minami T, Takata S (1986) Zinc oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J Appl Phys 60:482. doi:10.1063/1.337435

    Article  CAS  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665

    Article  CAS  Google Scholar 

  • Oller I, Gernjak W, Maldonado MI, P’erez-Estrada LA, S’anchez-P’erez JA, Malato S (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater B 138:507–517

    Article  CAS  Google Scholar 

  • Orozlan P, Duveneck GL, Ehrat M, Widmer HM (1993) Fiber-optic atrazine immunosensor. Sens Actuators B 11:301

    Article  Google Scholar 

  • Ortinero C, Shipin O (2008) Verbal communications

  • Pareek V, Adesina AA (2003) Handbook of photochemistry and photobiology, vol 1. American Scientific Publishers, Stevenson Ranch, pp 345–412

    Google Scholar 

  • Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Analyt Chem 21:96–115

    Article  CAS  Google Scholar 

  • Pengfei QF, Vermesh O, Grecu M (2003) Toward large arrays of multiplex-functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347. doi:10.1021/nl034010k

    Article  Google Scholar 

  • Peral J, Domenech X, Ollis DF (1997) Heterogeneous photocatalysis for purification, decontamination, and deodorization of air. J Chem Technol Biotechnol 70:117–140

    Article  CAS  Google Scholar 

  • Pirvutoiu S, Surugiu I, Ciucu A, Magearu V, Danielsson B (2001) Flow injection analysis of mercury(II) based on enzyme inhibition and thermometric detection. Analyst 126:1612. doi:10.1039/b102723a

    Article  CAS  Google Scholar 

  • Prevot AB, Fabbri D, Pramauro E, Rubio AM, de la Guardia M (2001) Continuous monitoring of photocatalytic treatments by flow injection. Degradation of dicamba in aqueous TiO2 dispersions. Chemosphere 44:249–255. doi:10.1016/S0045-6535(00)00168-5

    Article  Google Scholar 

  • Pummakarnchanaa O, Tripathia N, Dutta J (2005) Air pollution monitoring and GIS modeling: a new use of nanotechnology based solid state gas sensors. Sci Technol Adv Mater 6:251. doi:10.1016/j.stam.2005.02.003

    Article  Google Scholar 

  • Rahman MA, Muneer M (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon in aqueous suspensions of titanium dioxide. Desalination 181:161–172

    Article  CAS  Google Scholar 

  • Ramos D, Calleja M, Mertens J, Zaballos A, Tamaya J (2007) Measurement of the mass and rigidity of adsorbates on a microcantilever sensor. Sensors 7:1834

    Article  Google Scholar 

  • Ravilious K (2005) Guardian, UK December 6

  • Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31(Suppl.):139–144

    Article  Google Scholar 

  • Shah SI, Li W, Huang C.-P, Jung O, Ni C (2002) Colloquium paper: study of Nd 3+, Pd 2+, Pt 4+, and Fe 3+ dopant effect on photoreactivity of TiO2 nanoparticles. J PNAS 99(9):6482–6486. doi:10.1073/pnas.052518299

    Article  CAS  Google Scholar 

  • Su XL, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76(16):4806–4810

    Article  CAS  Google Scholar 

  • Subramanian A, Oden PI, Kennel SJ, Jacobson KB, Warmack RJ, Thundat T, Doktycz MJ (2002) Microcantilever-based calorimetric biosensing. Appl Phys Lett 81:385

    Article  CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Tech Adv Mater 6:335–340. doi:10.1016/j.stam.2005.03.007

    Article  CAS  Google Scholar 

  • Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165

    Article  CAS  Google Scholar 

  • Thompson DT (2001) A golden future for catalysis. Chem Br 37:43

    Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194

    Article  CAS  Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988. doi:10.1038/214986a0

    Article  CAS  Google Scholar 

  • Warad HC, Ghosh SC, Hemtanon B, Thanachayanont C, Dutta J (2005) Luminescent nanoparticles of Mn-doped ZnS passivated with sodium hexametaphosphate. Sci Tech Adv Mater 29:6–301. doi:10.1016/j.stam.2005.03.006

    Google Scholar 

  • Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ (2003) A microcantilever-based pathogen detector. Scanning 25:29

    Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GRM (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  • Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M, Li GY (2003) IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med 5:803

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Article  CAS  Google Scholar 

  • Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave-assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430. doi:10.1016/j.jhazmat.2006.11.042

    Article  Google Scholar 

  • Zhao G, Xing F, Deng S (2007) A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/nano-Au membrane and screen-printed electrode. Electrochem Comm 9:1263–1268. doi:10.1016/j.elecom.2007.01.036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the partial financial support from the NANOTEC Centre of Excellence in Nanotechnology at the Asian Institute of Technology, Ministry of Science and Technology, Royal Thai Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruah, S., Dutta, J. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7, 191–204 (2009). https://doi.org/10.1007/s10311-009-0228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-009-0228-8

Keywords

Navigation