Skip to main content
Log in

Electrochemistry: as cause and cure in water pollution—an overview

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

This article reviews both the pollution by the electrochemical industry and the use of electrochemistry to clean water. Main pollutants include Pd, Cd, Ni, Hg and other metals and cyanide as well as organic pollutants. The cause for water pollution by electrochemistry is due to the effluents from different electrochemical industries such as mercury from chlor-alkali industry; lead, cadmium and mercury from battery industry; heavy metals and organic contaminants from electroplating wastes; contaminants from corrosion processes; and persistent organic pollutants from the synthesis and use of pesticides, dyes and pharmaceuticals. Most pollutants can be successfully eliminated or converted to non-toxic materials by methods based on the electrochemical principles. Electrochemical depolluting methods are mainly electrodialysis, electrocoagulation, electroflotation, anodic processes, cathodic processes and electrochemical advanced oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abuzaid NS, Al-Hamouz Z, Bukhari AA, Essa MH (1999) Electrochemical treatment of nitrite using stainless steel electrodes. Water Air Soil Pollut 109:429–442. doi:10.1155/2010/232378

    CAS  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. doi:10.1002/jctb.2214

    CAS  Google Scholar 

  • Awad YM, Abuzaid NS (1997) Electrochemical treatment of phenolic wastewater: efficiency, design considerations and economic evaluation. J Environ Sci Health A 32:1393–1414. doi:10.1080/10934529709376617

    Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487. doi:10.1080/10643380600678112

    CAS  Google Scholar 

  • Ball P (2008) Water: water—an enduring mystery. Nature 452:291–292. doi:10.1038/452291a

    CAS  Google Scholar 

  • Bockris JOM (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  • Boudenne JL, Cerclier O (1999) Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation. Water Res 33:494–504. doi:10.1016/S0043-1354(98)00242-5

    CAS  Google Scholar 

  • Boye B, Dieng MM, Brillas E (2003) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim Acta 48:781–790. doi:10.1016/S0013-4686(02)00747-8

    CAS  Google Scholar 

  • Brillas E, Martinez-Huitle CA (eds) (2011) Synthetic diamond films: preparation, electrochemistry, characterization, and applications. Wiley, New Jersey. doi:10.1002/9781118062364

    Google Scholar 

  • Brillas E, Boye B, Banos MA, Calpe JC, Garrido JA (2003) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 51:227–235. doi:10.1016/S0045-6535(02)00836-6

    CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631. doi:10.1021/cr900136g

    CAS  Google Scholar 

  • Canizares P, Saez C, Lobato J, Rodrigo MA (2004) Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochim Acta 49:4641–4650. doi:10.1016/j.electacta.2004.05.019

    CAS  Google Scholar 

  • Cañizares P, Carmona M, Lobato J, Martínez F, Rodrigo MA (2005) Electrocoagulation of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185. doi:10.1021/ie048858a

    Google Scholar 

  • Canizares P, Paz R, Saez C, Rodrigo MA (2008) Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes—a comparison with other advanced oxidation processes. Electrochim Acta 53:2144–2153. doi:10.1016/j.electacta.2007.09.022

    CAS  Google Scholar 

  • Chakraborti D, Ghorai SK, Das B, Pal A, Nayak B, Shah BA (2009) Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain. J Environ Monit 11:1455–1459. doi:10.1039/b914858m

    CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. doi:10.1016/j.seppur.2003.10.006

    Google Scholar 

  • Chen G, Betterton EA, Arnold RG (1999) Electrolytic oxidation of trichloroethylene using a ceramic anode. J Appl Electrochem 29:961–970. doi:10.1023/A:1003541706456

    CAS  Google Scholar 

  • Chen L, Xu Z, Liu M, Huang Y, Fan R, Su Y, Hu G, Peng X, Peng X (2012) Lead exposure assessment from study near a lead-acid battery factory in China. Sci Total Environ 429:191–198. doi:10.1016/j.scitotenv.2012.04.015

    CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK, Chanda CR, Lodh D, Roy SL, Saha KC, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546. doi:10.1038/44056

    CAS  Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862. doi:10.1016/0013-4686(94)85175-1

    CAS  Google Scholar 

  • Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 andTi/SnO2 anodes. Environ Sci Technol 32:3570–3573. doi:10.1021/es971094o

    CAS  Google Scholar 

  • Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66:841–848. doi:10.1016/j.chemosphere.2006.06.033

    CAS  Google Scholar 

  • Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81:594–602. doi:10.1016/j.chemosphere.2010.08.032

    CAS  Google Scholar 

  • Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reactions pathways, and toxicity evaluation. Environ Sci Technol 46:4074–4082. doi:10.1021/es204621q

    CAS  Google Scholar 

  • Ditri PA, Ditri FM (1977) Mercury contamination—a human tragedy. John Wiley, UK

    Google Scholar 

  • Drogen J, Passek L (1965) Continuous electrolytic destruction of cyanide waste. Plat Surf Finish 18:310–313

    Google Scholar 

  • Drogui P, Blais JF, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent Pat Eng 1:257–272. doi:10.2174/187221207782411629

    CAS  Google Scholar 

  • Elfstrom Broo A, Berghult B, Hedberg T (1997) Copper corrosion in drinking water distribution systems—the influence of water quality. Corros Sci 39:1119–1132. doi:10.1016/S0010-938X(97)00026-7

    Google Scholar 

  • Feng J, Hu X, Yue PL, Zhu HY, Lu CQ (2003) Degradation of azo-dye orange II by a photoassisted Fenton reaction. Ind Eng Chem Res 42:2058–2066. doi:10.1021/ie0207010

    CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:889–910. doi:10.1039/CT8946500899

    Google Scholar 

  • Friberg L (1974) Cadmium in the environment. CRC Press, Ohio

    Google Scholar 

  • Gattrell M, Kirk DW (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng 68:997–1003. doi:10.1002/cjce.5450680615

    CAS  Google Scholar 

  • Genders JD, Weinberg NL (1992) Electrochemistry for a cleaner environment. The Electrochemistry Company, Inc., New York

    Google Scholar 

  • Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation. Ozone Sci Eng 9:335–352. doi:10.1080/01919518708552148

    CAS  Google Scholar 

  • Guivarch E, Trévin S, Lahitte C, Oturan MA (2003) Degradation of azo dyes in water by electro-Fenton process. Environ Chem Lett 1:39–44. doi:10.1007/s10311-002-0017-0

    Google Scholar 

  • Hofseth CS, Chapman TW (1999) Electrochemical destruction of dilute cyanide by copper‐catalyzed oxidation in a flow‐through porous electrode. J Electrochem Soc 146:199–207. doi:10.1149/1.1391587

    CAS  Google Scholar 

  • Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localised water treatment technology. Chemosphere 59:355–367. doi:10.1016/j.chemosphere.2004.10.023

    CAS  Google Scholar 

  • Isaac RA, Gil L, Cooperman AN, Hulme K, Eddy B, Ruiz M, Jacobson K, Larson C, Pancorbo OC (1997) Corrosion in drinking water distribution systems: a major contributor of copper and lead to wastewaters and effluents. Environ Sci Technol 31:3198–3203

    CAS  Google Scholar 

  • Kannan N, Sivadurai NS, Berchmans LJ, Vijayavalli R (1995) Removal of phenolic compounds by electrooxidation method. J Environ Sci Health A 30:2185–2203. doi:10.1080/10934529509376331

    Google Scholar 

  • Kobya M, Demirbas E, Dedeli A, Sensoy MT (2010) Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. J Hazard Mater 173:326–334. doi:10.1016/j.jhazmat.2009.08.092

    CAS  Google Scholar 

  • Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci 89:794–811

    Google Scholar 

  • Lakshmanan D, Clifford DA, Samanta G (2009) Ferrous and ferric ion generation during iron electrocoagulation. Environ Sci Technol 3:3853–3859. doi:10.1021/es8036669

    Google Scholar 

  • Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. doi:10.1016/j.cattod.2009.06.018

    CAS  Google Scholar 

  • Marincic L, Leitz FB (1978) Electro-oxidation of ammonia in waste water. J Appl Electrochem 8:333–345. doi:10.1007/BF00612687

    CAS  Google Scholar 

  • Mark Shannon A, Bohn W, Elimelech M, Georgiadis G, Marinas J, Mayes M (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. doi:10.1038/nature06599

    Google Scholar 

  • Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis Ch (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83. doi:10.1149/1.1553790

    CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47:1998–2005. doi:10.1002/anie.200703621

    Google Scholar 

  • Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41:17–24. doi:10.1021/es072435t

    Google Scholar 

  • Murphy OJ, Hitchens GD, Kaba L, Verostko CE (1992) Direct electrochemical oxidation of organics for wastewater treatment. Water Res 26:443–451. doi:10.1016/0043-1354(92)90044-5

    CAS  Google Scholar 

  • Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482

    CAS  Google Scholar 

  • Oturan N, Oturan MA (2005) Degradation of three pesticides used in viticulture by electrogenerated Fenton’s reagent. Agron Sustain Dev 25:267–270. doi:10.1051/agro:2005005

    CAS  Google Scholar 

  • Oturan MA, Aaron JJ, Oturan N, Pinson J (1999) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic Sci 55:558–562. doi:10.1002/(SICI)1096-9063(199905)55:5<558:AID-PS968>3.3.CO;2-8

    CAS  Google Scholar 

  • Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34:3474–3479. doi:10.1021/es990901b

    CAS  Google Scholar 

  • Oturan MA, Oturan N, Lahitte C, Trevin S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic micropollutant, the pentachlorophenol. J Electroanal Chem 507:96–102. doi:10.1016/S0022-0728(01)00369-2

    CAS  Google Scholar 

  • Oturan MA, Sirés I, Oturan N, Perocheau S, Laborde JL, Trevin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332. doi:10.1016/j.jelechem.2008.08.005

    CAS  Google Scholar 

  • Oturan MA, Edelahi MC, Oturan N, El Kacemi K, Aaron JJ (2010) Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B Environ 97:82–89. doi:10.1016/j.apcatb.2010.03.026

    CAS  Google Scholar 

  • Oturan MA, Oturan N, Edelahi MC, Podvorica FI, El Kacemi K (2011) Oxidative degradation of herbicides diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135. doi:10.1016/j.cej.2011.03.072

    CAS  Google Scholar 

  • Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170. doi:10.1007/s10311-011-0337-z

    CAS  Google Scholar 

  • Özcan A, Sahin Y, Koparal AS, Oturan MA (2008a) Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency. Water Res 42:2889–2898. doi:10.1016/j.watres.2008.02.027

    Google Scholar 

  • Özcan A, Şahin Y, Oturan MA (2008b) Removal of propham from water by using electro-Fenton technology: kinetics and mechanism. Chemosphere 73:737–744. doi:10.1016/j.chemosphere.2008.06.027

    Google Scholar 

  • Özcan A, Oturan N, Şahin Y, Oturan MA (2010) Electro-Fenton treatment of aqueous Clopyralid solution. Int J Environ Anal Chem 90:478–486. doi:10.1080/03067310903096011

    Google Scholar 

  • Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199. doi:10.1016/j.electacta.2005.04.023

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. doi:10.1021/cr9001319

    CAS  Google Scholar 

  • Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087. doi:10.1016/j.electacta.2011.05.105

    CAS  Google Scholar 

  • Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256. doi:10.1016/j.apcatb.2003.09.01

    CAS  Google Scholar 

  • Pletcher D, Walsh FC (1993) Industrial electrochemistry. Blackie, London

    Google Scholar 

  • Polcaro MA, Palmas S (1997) Electrochemical oxidation of chlorophenols. Ind Eng Chem Res 36:1791–1798. doi:10.1021/ie960557g

    CAS  Google Scholar 

  • Pulgarin C, Adler N, Peringer P, Comninellis C (1994) Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res 28:887–893. doi:10.1016/0043-1354(94)90095-7

    CAS  Google Scholar 

  • Rajalo G, Petrovskaya T (1996) Elective electrochemical oxidation of sulphides in tannery wastewater. Environ Technol 17:605–612. doi:10.1080/09593331708616424

    CAS  Google Scholar 

  • Rajeshwar K, Ibanez JG (1997a) Environmental electrochemistry: fundamentals and applications in pollution abatement. Academic Press, London

    Google Scholar 

  • Rajeshwar K, Ibanez J (1997b) Environmental electrochemistry. Academic Press, San Diego, CA

    Google Scholar 

  • Ricardo S, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115:107–116. doi:10.1016/j.apcatb.2011.12.026

    Google Scholar 

  • Rozhdetsvenska L, Monzie I, Chanel S, Mahmoud A, Muhr L, Grévillot G, Belyakov V, Lapicque F (2001) Ion exchange-assisted electrodialysis for treatment of dilute copper-containing wastes. Chem Ing Tech 73:761–765. doi:10.1002/1522-2640(200106)

    Google Scholar 

  • Ruiz EJ, Hernandez-Ramirez A, Peralta-Hernandez JM, Arias C, Brillas E (2011) Application of solarphotoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392. doi:10.1016/j.cej.2011.03.004

    CAS  Google Scholar 

  • Sarkar SKA, Evans GM, Donne SW (2010) Bubble size measurement in electroflotation. Miner Eng 23:1058–1065. doi:10.1016/j.mineng.2010.08.015

    CAS  Google Scholar 

  • Sharifian H, Kirk DW (1986) Electrochemical oxidation of phenol. J Electrochem Soc 133:921–924. doi:10.1149/1.2108763

    CAS  Google Scholar 

  • Simonsson D (1997) Electrochemistry for a cleaner environment. Chem Soc Rev 26:181–189. doi:10.1039/CS9972600181

    CAS  Google Scholar 

  • Sirés I, Oturan N, Guivarch E, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72:592–600. doi:10.1016/j.chemosphere.2008.03.010

    Google Scholar 

  • Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent aqueous solutions. Water Res 44:3109–3120. doi:10.1016/j.watres.2010.03.005

    Google Scholar 

  • Srianujata S (1998) Lead-the toxic metal to stay with human. J Toxicol Sci 23(supl. 2):237–240. doi:10.2131/jts.23.SupplementII_237

    CAS  Google Scholar 

  • Strathmann H (1986) Electrodialysis in synthetic membranes: science, engineering, and applications. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol 27:304–310. doi:10.1021/es00039a010

    Google Scholar 

  • Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1994) Application of electrochemical process for tannery wastewater treatment. Toxicol Environ Chem 44:189–202. doi:10.1080/02772249409358057

    CAS  Google Scholar 

  • Tang WZ, Huang CP (1996) 2,4-dichlorophenol oxidation kinetics by Fenton’s reagent. Environ Technol 17:1371–1378. doi:10.1080/09593331708616506

    CAS  Google Scholar 

  • Trabelsi S, Oturan N, Bellakhal N, Oturan MA (2012) Application of Doehlert matrix to determine the optimal conditions for landfill leachate treatment by electro-Fenton process. J Mater Environ Sci 3:426–433. doi:10.1016/j.cej.2011.03.072

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2011) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water—a novel approach. Sep Purif Technol 80:643–651. doi:10.1016/j.seppur.2011.06.027

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012a) Process conditions and kinetics for the removal of copper from water by electrocoagulation. Environ Eng Sci 29:563–572. doi:10.1089/ees.2010.0429

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012b) Electrochemical removal of boron from water: adsorption and thermodynamic studies. Can J Chem Eng 90:1017–1026. doi:10.1002/cjce.20585

    CAS  Google Scholar 

  • Vasudevan S, Jayaraj J, Lakshmi J, Sozhan G (2009a) Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies. Korean J Chem Eng 26:1058–1064. doi:10.2478/s11814-009-0176-9

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2009b) Studies on a Mg-Al-Zn alloy as an anode for the removal of fluoride from drinking water in an electrocoagulation process. Clean 37:372–378. doi:10.1002/clen.200900031

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Vanathi R (2010a) Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherms and sludge characterization. Clean 38:9–16. doi:10.1002/clen.200900169

    CAS  Google Scholar 

  • Vasudevan S, Epron F, Lakshmi J, Ravichandran S, Mohan S, Sozhan G (2010b) Removal of NO3 from drinking water by electrocoagulation—an alternate approach. Clean 38:225–229. doi:10.1002/clen.200900226

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi S, Sozhan G (2010c) Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization. Sep Sci Technol 45:1313–1325. doi:10.1080/01496391003775949

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Packiyam M (2010d) Electrocoagulation studies on removal of cadmium using magnesium electrode. J Appl Electrochem 40:2023–2032. doi:10.1007/s10800-010-0182-y

    CAS  Google Scholar 

  • Vasudevan S, Suresh Kannan B, Lakshmi J, Mohanraj S, Sozhan G (2011a) Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J Chem Technol Biotechnol 86:428–436. doi:10.1002/jctb.2534

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2011b) Studies on the Al–Zn–In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process. Desalination 275:260–268. doi:10.1016/j.desal.2011.03.011

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2011c) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. J Hazard Mater 192:26–34. doi:10.1016/j.jhazmat.2011.04.081

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2012) Electrocoagulation studies on the removal of copper from water using mild steel electrode. Water Environ Res 84:209–219. doi:10.2175/106143011X13225991083640

    CAS  Google Scholar 

  • Vik EA, Carlson DA, Eikum AS, Gjessin ET (1984) Electrocoagulation of potable water. Water Res 18:1355–1360. doi:10.1016/0043-1354(84)90003-4

    CAS  Google Scholar 

  • Wang J, Angnes L, Tobias H, Roesner RA, Hong KC, Glass RS, Kong FM, Pekala RW (1993) Carbon aerogel composite electrodes. Anal Chem 65:2300–2303. doi:10.1021/ac00065a022

    CAS  Google Scholar 

  • Yu Peng C, Korshin GV (2011) Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems. Water Res 45:5553–5563. doi:10.1016/j.watres.2011.08.017

    Google Scholar 

  • Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215–216:287–293. doi:10.1016/j.jhazmat.2012.02.070

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyan Vasudevan.

Additional information

Dr. S. Vasudevan has been awarded Eminent Scientist Award—2013 by Indian Society for Electro Analytical Chemist (ISEAC) for his contribution in the area of Electrochemical Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, S., Oturan, M.A. Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett 12, 97–108 (2014). https://doi.org/10.1007/s10311-013-0434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-013-0434-2

Keywords

Navigation