Skip to main content
Log in

Plants to harvest rhenium: scientific and economic viability

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Rhenium (Re) is one of the rarest (7 × 10−8 %) and most widely dispersed elements on Earth’s upper crust. As a consequence of its scarcity, Re is also one of the most expensive metals in the world market. Re is indeed highly demanded by the aerospace industry for the production of high-temperature superalloy turbine blades. There is a lack of study on the viability of Re phytomining. The occurrence of Re in vegetation surrounding natural and anthropogenic sources of Re suggests the ability of plants for Re accumulation and biogeochemical indication. Here we studied the aptitude of Indian mustard and scouring rush to uptake Re, in order to test the feasibility of Re phytomining. An organic substrate was spiked with KReO4 to attain Re concentrations of 5, 10, 20, 40, and 80 mg kg−1. The plants were grown for 45 and 75 days under controlled greenhouse conditions. Plant tissue samples from roots and shoots were collected in septuplicate at both harvests and analysed by atomic emission spectroscopy. Our results show high concentrations of Re in plants, ranging from 1553 to 22,617 mg kg−1 at 45 days and from 1348 to 23,396 mg kg−1 at 75 days for Indian mustard range. A profit of 3906 US$ ha−1 harvest−1 is expected from the recovered Re. Our findings thus demonstrate for the first time the scientific and economic viability of Re phytomining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abisheva Z, Zagorodnyaya A (2002) Hydrometallurgy in rare metal production technology in Kazakhstan. Hydrometallurgy 63:55–63. doi:10.1016/S0304-386X(01)00201-8

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Anderson CWN (2013) Phytoextraction to promote sustainable development. J Degrad Min Lands Manag 1:51–56

    Google Scholar 

  • Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392. doi:10.1016/j.mineng.2004.07.002

    Article  CAS  Google Scholar 

  • Anderson CWN, Meech JA, Veiga MM, Krisnayanti D (2014) Can phytoextraction support the gold mining industry in developing countries? Case study for Indonesia. In: Shechtman international symposium, Cancun, pp 1–13

  • Askari Zamani MA, Hiroyoshi N, Tsunekawa M et al (2005) Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy 80:23–31. doi:10.1016/j.hydromet.2005.06.016

    Article  CAS  Google Scholar 

  • Balbuena TS, He R, Salvato F et al (2012) Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale. Front Plant Sci 3:131. doi:10.3389/fpls.2012.00131

    Article  Google Scholar 

  • Bozhkov O, Tzvetkova C, Blagoeva T (2007) Plant biosphere—natural extractor and concentrator of rhenium from soils and waters. In: WSEAS international conference on waste management, water pollution, air pollution, indoor climate. pp 257–261

  • Bozhkov O, Tzvetkova C, Borisova L, Bryskin B (2012) Phytomining: new method for rhenium. Adv Mater Process 170:34–37

    CAS  Google Scholar 

  • Cannon HL, Shacklette HT, Bastron H (1968) Metal absorption by Equisetum (Horsetail). US Geological Survey, Washington

    Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    Article  CAS  Google Scholar 

  • Clemente R, Hartley W, Riby P et al (2010) Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut 158:1644–1651. doi:10.1016/j.envpol.2009.12.006

    Article  CAS  Google Scholar 

  • Dunn CE (2007) Handbook of exploration and environmental geochemistry, 9th edn. Elsevier, Amsterdam

    Google Scholar 

  • Harris AT, Naidoo K, Nokes J et al (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17:194–200. doi:10.1016/j.jclepro.2008.04.011

    Article  CAS  Google Scholar 

  • Hunt AJ, Anderson CWN, Bruce N et al (2014) Phytoextraction as a tool for green chemistry. Green Process Synth 3:3–22. doi:10.1515/gps-2013-0103

    CAS  Google Scholar 

  • Jones JB (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Krisnayanti BD, Anderson C (2014) Gold phytomining: a new idea for environmental sustainability in indonesia. Indones J Geosci 1:1–7

    Google Scholar 

  • Liu Y-B, Tang Z-X, Darmency H et al (2012) The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea). PLoS One 7:e39705. doi:10.1371/journal.pone.0039705

    Article  CAS  Google Scholar 

  • Naumov AV (2007) Rhythms of rhenium. Russ J Non-Ferrous Met 48:418–423. doi:10.3103/S1067821207060089

    Article  Google Scholar 

  • Novo LAB, Covelo EF, González L (2013) The use of waste-derived amendments to promote the growth of Indian mustard in copper mine tailings. Miner Eng 53:24–30. doi:10.1016/j.mineng.2013.07.004

    Article  CAS  Google Scholar 

  • Polyak DE (2014a) Rhenium. 2012 Minerals yearbook. U.S. Geological Survey, pp 62.1–62.5

  • Polyak DE (2014b) Rhenium. Mineral commodity summaries. U.S. Geological Survey, pp 130–131

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019. doi:10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochemical Explor 128:42–50. doi:10.1016/j.gexplo.2013.01.008

    Article  CAS  Google Scholar 

  • Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84. doi:10.1007/s10311-013-0430-6

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110. doi:10.1016/j.biortech.2007.02.035

    Article  CAS  Google Scholar 

  • Tagami K, Uchida S (2005) A comparison of concentration ratios for technetium and nutrient uptake by three plant species. Chemosphere 60:714–717. doi:10.1016/j.chemosphere.2005.03.087

    Article  CAS  Google Scholar 

  • Tagami K, Uchida S (2010) Rhenium: radionuclides. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, pp 23–26. doi:10.1002/9781119951438.eibc0431

  • Vamerali T, Bandiera M, Mosca G (2009) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    Article  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. doi:10.1007/s11104-012-1287-3

    Article  Google Scholar 

  • Warren HV, Delavault RE (1950) Gold and silver content of some trees and horsetails in British Columbia. Geol Soc Am Bull 61:123–128. doi:10.1130/0016-7606(1950)61[123:GASCOS]2.0.CO;2

    Article  CAS  Google Scholar 

  • Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manage 111:249–257. doi:10.1016/j.jenvman.2012.07.037

    Article  Google Scholar 

  • Witters N, Mendelsohn RO, Van Slycken S et al (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469. doi:10.1016/j.biombioe.2011.08.016

    Article  CAS  Google Scholar 

  • Yang Q, Yao D, Li S et al (2012) The research progress on carbon fixation and oxygen release of phytoremediation. J Coal Sci Eng 18:196–200. doi:10.1007/s12404-012-0216-7

    Article  Google Scholar 

  • Zakrzewska-Koltuniewicz G, Herdzik-Koniecko I, Cojocaru C, Chajduk E (2014) Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J Hazard Mater 275:136–145. doi:10.1016/j.jhazmat.2014.04.066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) under grant Nº SFRH/BPD/103476/2014 and the National Council for Scientific and Technological Development of Brazil (CNPq) under process No. 150084/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís A. B. Novo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novo, L.A.B., Mahler, C.F. & González, L. Plants to harvest rhenium: scientific and economic viability. Environ Chem Lett 13, 439–445 (2015). https://doi.org/10.1007/s10311-015-0517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0517-3

Keywords

Navigation