Skip to main content

Advertisement

Log in

Applications of nanocomposite hydrogels for biomedical engineering and environmental protection

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanocomposite hydrogels are polymeric networks that possess a unique property of hydration. The presence of alcohols, carboxylic acids and amides as hydrophilic moieties in structure of nanocomposite hydrogels enhances their stiffness and water-absorbing capacity. Addition of cross-linker in the synthesis of hydrogels increases their stability under extreme conditions of temperature, pH and pressure. Natural polymer-based nanocomposite hydrogels are biodegradable, highly hydrophilic and possess good mechanical strength. Gelatin, chitin, cellulose, pectin, carrageenan, starch and alginate are natural polymers commonly used to fabricate nanocomposite hydrogels. Nanocomposite hydrogels have special characteristics such as high swelling rate, selectivity and stimuli-sensitive nature. Here we review nanocomposite hydrogels for environmental protection and biomedical engineering. Applications in biomedical engineering include drug delivery agents, wound dressing, tissue engineering and antibacterials. Applications in environmental protection include ion exchangers, adsorption, photocatalysis and soil conditioning. Many nanocomposite hydrogels show excellent adsorption selectivity for heavy metal ions: Cu2+ up to 30.35 mg/g, Pb2+ up to 35.94 mg/g, and Zn2+ and Fe3+ up to 94.34 mg/g. Xanthan gum-based nanocomposite hydrogel has removed 96% dye from industrial effluent as reported. In addition, most of the nanocomposite hydrogels showed better adsorption capacity for pollutants in the pH range from 5 to 7. The nanocomposite hydrogels could also be regenerated and successfully utilized for several times. Nanocomposite hydrogels are therefore good bio-absorbent materials for environmental detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd SG, Sen M, El-naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89:478–485. doi:10.1016/j.carbpol.2012.03.031

    Article  CAS  Google Scholar 

  • Adhikari B, Biswas A, Banerjee A (2012) Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels. ACS Appl Mater Interfaces 4:5472–5482. doi:10.1021/am301373n

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188. doi:10.1007/s13204-012-0080-1

    Article  CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. doi:10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  • Alzari V, Nuvoli D, Scognamillo S (2011) Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J Mater. doi:10.1039/c1jm11076d

    Google Scholar 

  • Am Ende MT, Hariharan D, Peppas NA (1995) Factors influencing drug and protein transport and release from ionic hydrogels. React Polym 25:127–137. doi:10.1016/0923-1137(94)00040-C

    Article  CAS  Google Scholar 

  • Anirudhan TS, Radhakrishnan PG (2011) Thermodynamics of chromium(III) adsorption onto a cation exchanger derived from saw dust of Jack wood. Environ Chem Lett 9:121–125. doi:10.1007/s10311-009-0255-5

    Article  CAS  Google Scholar 

  • Anirudhan TS, Divya PL, Nima J (2015) Synthesis and characterization of silane coated magnetic nanoparticles/glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil. Mater Sci Eng, C 55:471–481. doi:10.1016/j.msec.2015.05.068

    Article  CAS  Google Scholar 

  • Annabi N, Tamayol A, Uquillas JA et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124. doi:10.1002/adma.201303233

    Article  CAS  Google Scholar 

  • Argenziano M, Dianzani C, Ferrara B et al (2017) Cyclodextrin-based nanohydrogels containing polyamidoamine units: a new dexamethasone delivery system for inflammatory diseases. Gels 3:1–15

    Article  Google Scholar 

  • Atia AA, Donia AM, Hussin RA, Rashad RT (2009) Swelling and metal ion uptake characteristics of kaolinite containing poly [(acrylic acid)-co-acrylamide] hydrogels. Desalin Water Treat 3:73–82. doi:10.5004/dwt.2009.262

    Article  CAS  Google Scholar 

  • Ayekoe PY, Robert D, Goné DL (2016) Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment. Environ Chem Lett 14:387–393. doi:10.1007/s10311-016-0565-3

    Article  CAS  Google Scholar 

  • Azizi Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whisker, their properties and their application in nanocomposites field. Biomacromol 6:612–626. doi:10.1021/bm0493685

    Article  CAS  Google Scholar 

  • Bae H, Chu H, Edalat F et al (2014) Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med 8:1–14. doi:10.1002/term.1494

    Article  CAS  Google Scholar 

  • Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46:2376. doi:10.1039/c000051e

    Article  CAS  Google Scholar 

  • Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799. doi:10.1016/j.jhazmat.2007.01.079

    Article  CAS  Google Scholar 

  • Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. doi:10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  • Barkhordari S, Yadollahi M, Namazi H (2014) pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21:454. doi:10.1007/s10965-014-0454-z

    Article  CAS  Google Scholar 

  • Baruah U, Chowdhury D (2016) Functionalized graphene oxide quantum dot–PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions. Nanotechnology 27:145501

    Article  CAS  Google Scholar 

  • Baskovich B, Sampson EM, Schultz GS, Parnell LKS (2008) Wound dressing components degrade proteins detrimental to wound healing. Int Wound J 5:543–551. doi:10.1111/j.1742-481X.2007.00422.x

    Article  Google Scholar 

  • Bhattacharya S, Nandi S, Jelinek R (2017) Carbon-dot-hydrogel for enzyme-mediated bacterial detection. RSC Adv 7:588–594. doi:10.1039/C6RA25148J

    Article  CAS  Google Scholar 

  • Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. doi:10.1016/j.cej.2014.08.030

    Article  CAS  Google Scholar 

  • Billiet T, Vandenhaute M, Schelfhout J et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041. doi:10.1016/j.biomaterials.2012.04.050

    Article  CAS  Google Scholar 

  • Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154. doi:10.1016/j.drudis.2012.06.014

    Article  CAS  Google Scholar 

  • Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene Photonics and Optoelectronics. Nat Phot. doi:10.1038/nphoton.2010.186

    Google Scholar 

  • Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439. doi:10.1021/jf401273n

    Article  CAS  Google Scholar 

  • Boruah M, Gogoi P, Manhar AK et al (2014) Biocompatible carboxymethylcellulose-g-poly(acrylic acid)/OMMT nanocomposite hydrogel for in vitro release of vitamin B 12. RSC Adv 4:43865–43873. doi:10.1039/C4RA07962K

    Article  CAS  Google Scholar 

  • Brannon-Peppas L, Peppas NA (1991) Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci 46:715–722. doi:10.1016/0009-2509(91)80177-Z

    Article  CAS  Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. doi:10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  • Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264. doi:10.1002/macp.201400427

    Article  CAS  Google Scholar 

  • Carvalho HWP, Batista APL, Hammer P et al (2010) Removal of metal ions from aqueous solution by chelating polymeric hydrogel. Environ Chem Lett 8:343–348. doi:10.1007/s10311-009-0231-0

    Article  CAS  Google Scholar 

  • Cayuela A, Soriano ML, Kennedy SR et al (2016) Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151:100–105. doi:10.1016/j.talanta.2016.01.029

    Article  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi:10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  • Chen Z (2012) Synthesis of Mn3O4-encapsulated graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behaviour

  • Chen P, Xu S, Wu R et al (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200. doi:10.1016/j.clay.2013.01.012

    Article  CAS  Google Scholar 

  • Chiefari J, Chong YKB, Ercole F et al (1998) Living free-radical polymerization by reversible addition—fragmentation chain transfer: the raft process we wish to report a new living free-radical polymer- ization of exceptional effectiveness and versatility. 1 the living character is conferred by. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  • Çöle G, Gök MK, Güçlü G (2013) Removal of basic dye from aqueous solutions using a novel nanocomposite hydrogel: N-vinyl 2-pyrrolidone/itaconic acid/organo clay. Water Air Soil Pollut. doi:10.1007/s11270-013-1760-5

    Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. doi:10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  • Dalaran M, Emik S, Güçlü G et al (2009) Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels. Polym Bull 63:159–171. doi:10.1007/s00289-009-0077-4

    Article  CAS  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135. doi:10.1016/j.cis.2011.05.008

    Article  CAS  Google Scholar 

  • Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) Nanocomposite super-swelling hydrogels with nanorod bentonite. J Appl Polym Sci 120:3453–3459. doi:10.1002/app.33417

    Article  CAS  Google Scholar 

  • Dash R, Cateto CA, Ragauskas AJ (2014) Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic acid)-polyethylene glycol and nanofibrillated cellulose. Cellulose 21:529–534. doi:10.1007/s10570-013-0142-x

    Article  CAS  Google Scholar 

  • Datta KKR, Achari A, Eswaramoorthy M (2013) Aminoclay: a functional layered material with multifaceted applications. J Mater Chem A 1:6707. doi:10.1039/c3ta00100h

    Article  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi:10.1126/science.1116995

    Article  CAS  Google Scholar 

  • Dispenza C, Sabatino MA, Niconov A et al (2012) E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles. Radiat Phys Chem 81:1456–1459. doi:10.1016/j.radphyschem.2011.11.043

    Article  CAS  Google Scholar 

  • Dupont L, Jolly G, Aplincourt M (2007) Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ Chem Lett 5:125–129. doi:10.1007/s10311-007-0092-3

    Article  CAS  Google Scholar 

  • Eid M, El-Arnaouty MB, Salah M et al (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N- vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res. doi:10.1007/s10965-012-9835-3

    Google Scholar 

  • El Salmawi KM (2007) Gamma radiation-induced crosslinked PVA/chitosan blends for wound dressing. J Macromol Sci Part A Pure Appl Chem 44:541–545. doi:10.1080/10601320701235891

    Article  CAS  Google Scholar 

  • Elias DC, Nair RR, Mohiuddin TMG et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 80(323):610–613. doi:10.1126/science.1167130

    Article  CAS  Google Scholar 

  • Eswaramma S, Reddy NS, Rao KSVK (2017) Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: development, swelling dynamics and drug release characteristics. Int J Biol Macromol 103:1162–1172. doi:10.1016/j.ijbiomac.2017.05.160

    Article  CAS  Google Scholar 

  • Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 10(1063/1):4864153

    Google Scholar 

  • Fan J, Shi Z, Lian M et al (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433. doi:10.1039/c3ta10639j

    Article  CAS  Google Scholar 

  • Ferse B, Richter S, Eckert F et al (2008) Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite hydrogels synthesized by photopolymerization. Langmuir 24:12627–12635. doi:10.1021/la802162g

    Article  CAS  Google Scholar 

  • Franking R, Kim H, Chambers SA et al (2012) Photochemical grafting of organic alkenes to single-crystal TiO2 surfaces: a mechanistic study. Langmuir 28:12085–12093. doi:10.1021/la302169k

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Fu S, Guo G, Gong C et al (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/ poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113:16518–16525. doi:10.1021/jp907974d

    Article  CAS  Google Scholar 

  • Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148. doi:10.1016/j.actbio.2011.07.023

    Article  CAS  Google Scholar 

  • Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453. doi:10.1002/bit.25160

    Article  CAS  Google Scholar 

  • Georgieva N, Bryaskova R, Tzoneva R (2012) New Polyvinyl alcohol-based hybrid materials for biomedical application. Mater Lett 88:19–22. doi:10.1016/j.matlet.2012.07.111

    Article  CAS  Google Scholar 

  • Ghorai S, Sinhamahpatra A, Sarkar A et al (2012) Novel biodegradable nanocomposite based on XG–g–PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190. doi:10.1016/j.biortech.2012.05.063

    Article  CAS  Google Scholar 

  • Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. doi:10.1021/am4055657

    Article  CAS  Google Scholar 

  • Glicklis R, Shapiro L, Agbaria R et al (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67:344–353

    Article  CAS  Google Scholar 

  • Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88. doi:10.1016/j.jconrel.2013.10.017

    Article  CAS  Google Scholar 

  • Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61. doi:10.1016/j.msec.2013.10.006

    Article  CAS  Google Scholar 

  • Güçlü G, Al E, Emik S et al (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by Starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346. doi:10.1007/s00289-009-0217-x

    Article  CAS  Google Scholar 

  • Guilherme MR, Fajardo AR, Moia TA et al (2010) Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. Eur Polym J 46:1465–1474. doi:10.1016/j.eurpolymj.2010.04.008

    Article  CAS  Google Scholar 

  • Gultepe E, Nagesha D, Sridhar S, Amiji M (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62:305–315. doi:10.1016/j.addr.2009.11.003

    Article  CAS  Google Scholar 

  • Guo J, Zhou M, Yang C (2017) Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci Rep 7:7902. doi:10.1038/s41598-017-08353-8

    Article  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328. doi:10.1016/j.jcis.2003.11.007

    Article  CAS  Google Scholar 

  • Gupta MK, Bajpai J, Bajpai AK (2014a) Preparation and characterizations of superparamagnetic iron oxide-embedded poly(2-hydroxyethyl methacrylate) nanocarriers. J Appl Polym Sci. doi:10.1002/app.40791

    Google Scholar 

  • Gupta VK, Pathania D, Asif M, Sharma G (2014b) Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity. J Mol Liq 196:107–112. doi:10.1016/j.molliq.2014.03.021

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma G, Pathania D, Kothiyal NC (2015) Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system. J Ind Eng Chem 21:957–964. doi:10.1016/j.jiec.2014.05.001

    Article  CAS  Google Scholar 

  • Haas HC, Kamath PM, Norman W (1957) Ionic Grafting. J Plym Sci Part A Polym Chem XXIV:85–92

    Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649. doi:10.1016/j.addr.2008.08.002

    Article  CAS  Google Scholar 

  • Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241. doi:10.1038/pj.2010.141

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T, Fan S (2002) Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay. Macromolecules 35:10162–10171. doi:10.1021/ma021301r

    Article  CAS  Google Scholar 

  • Haraguchi K, Li HJ, Matsuda K et al (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 38:3482–3490. doi:10.1021/ma047431c

    Article  CAS  Google Scholar 

  • Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258. doi:10.1002/marc.201100248

    Article  CAS  Google Scholar 

  • Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95:421–427. doi:10.1016/j.carbpol.2013.03.013

    Article  CAS  Google Scholar 

  • He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym 88:1100–1108. doi:10.1016/j.carbpol.2012.01.071

    Article  CAS  Google Scholar 

  • Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5:103036–103046. doi:10.1039/C5RA07076G

    Article  CAS  Google Scholar 

  • Hebeish A, Hashem M, El-Hady MMA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413. doi:10.1016/j.carbpol.2012.08.094

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym (Guildf) 49:1993–2007. doi:10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  • Holloway JL, Lowman AM, VanLandingham MR, Palmese GR (2013) Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Compos Sci Technol 85:118–125. doi:10.1016/j.compscitech.2013.06.007

    Article  CAS  Google Scholar 

  • Hu S, Zhao Q, Dong Y et al (2013) Carbon-dot-loaded alginate gels as recoverable probes: fabrication and mechanism of fluorescent detection. Langmuir 29:12615–12621. doi:10.1021/la402647t

    Article  CAS  Google Scholar 

  • Huang X, Xu S, Zhong M et al (2009) Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels. Appl Clay Sci 42:455–459. doi:10.1016/j.clay.2008.05.008

    Article  CAS  Google Scholar 

  • Huh HW, Zhao L, Kim SY (2015) Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr Polym 126:130–140. doi:10.1016/j.carbpol.2015.03.033

    Article  CAS  Google Scholar 

  • Hussain F (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575. doi:10.1177/0021998306067321

    Article  CAS  Google Scholar 

  • Ifuku S (2015) Chitin nanofibers: preparations, modifications, and applications. Handb Polym Nanocompos Process Perform Appl Vol C Polym Nanocompo Cellul Nanopart. doi:10.1007/978-3-642-45232-1-73

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  • Janas D, Boncel S, Koziol KKK (2014) Electrothermal halogenation of carbon nanotube films. Carbon N Y 73:259–266. doi:10.1016/j.carbon.2014.02.062

    Article  CAS  Google Scholar 

  • Jayaramudu T, Raghavendra GM, Varaprasad K et al (2013) Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194. doi:10.1016/j.carbpol.2013.02.075

    Article  CAS  Google Scholar 

  • Jovanović Ž, Krklješ A, Stojkovska J et al (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215. doi:10.1016/j.radphyschem.2011.06.005

    Article  CAS  Google Scholar 

  • Ju X-J, Zhang S-B, Zhou M-Y et al (2009) Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167:114–118. doi:10.1016/j.jhazmat.2008.12.089

    Article  CAS  Google Scholar 

  • Kabiri K, Zohuriaan-Mehr MJ (2003) Superabsorbent hydrogel composites. Polym Adv Technol 14:438–444. doi:10.1002/pat.356

    Article  CAS  Google Scholar 

  • Kadirvelu K, Palanival M, Kalpana R, Rajeswari S (2000) Activated carbon from an agricultural by-product, for the treatment of dyeing industry wastewater. Bioresour Technol 74:263–265. doi:10.1016/S0960-8524(00)00013-4

    Article  CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262. doi:10.1016/S0960-8524(99)00127-3

    Article  CAS  Google Scholar 

  • Kamari A, Aljafree NFA, Yusoff SNM (2016) Oleoyl–carboxymethyl chitosan as a new carrier agent for the rotenone pesticide. Environ Chem Lett 14:417–422. doi:10.1007/s10311-016-0550-x

    Article  CAS  Google Scholar 

  • Kamath SR, Proctor A (1998) Silica gel from rice hull ash: preparation and characterization. Cereal Chem 75:484–487. doi:10.1094/CCHEM.1998.75.4.484

    Article  CAS  Google Scholar 

  • Kania RE, Meunier A, Hamadouche M et al (1998) Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 43:38–45

    Article  CAS  Google Scholar 

  • Kawaguchi M, Fukushima T, Hayakawa T et al (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J 25:719–725. doi:10.4012/dmj.25.719

    Article  CAS  Google Scholar 

  • Kaya IGB, Duranoglu D, Beker U, Senkal BF (2011) Development of polymeric and polymer-based hybrid adsorbents for chromium removal from aqueous solution. CLEAN Soil Air Water 39:980–988. doi:10.1002/clen.201000552

    Article  CAS  Google Scholar 

  • Keener JP, Sircar S, Fogelson AL (2011) Kinetics of swelling gels. SIAM J Appl Math 71:854–875. doi:10.1137/100796984

    Article  Google Scholar 

  • Keng P-S, Lee S-L, Ha S-T et al (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12:15–25. doi:10.1007/s10311-013-0427-1

    Article  CAS  Google Scholar 

  • Khalek MAM, Mahmoud GA, El-kelesh NA (2012) Synthesis and characterization of poly-methacrylic acid grafted chitosan-bentonite composite and its application for heavy metals recovery. Chem Mater Res 2:1–8

    Google Scholar 

  • Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781. doi:10.1016/j.eurpolymj.2006.11.030

    Article  CAS  Google Scholar 

  • Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. doi:10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  • Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 6:E298–E310. doi:10.1208/pt060240

    Article  Google Scholar 

  • Kumar A, Sharma G, Naushad M et al (2014) Polyacrylamide/Ni0.02 Zn0.98 O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal. Ind Eng Chem Res 53:15549–15560. doi:10.1021/ie5018173

    Article  CAS  Google Scholar 

  • Kumar A, Sharma G, Naushad M, Thakur S (2015) SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187. doi:10.1016/j.cej.2015.05.126

    Article  CAS  Google Scholar 

  • Kumar A, Guo C, Sharma G et al (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv 6:13251–13263. doi:10.1039/C5RA23372K

    Article  CAS  Google Scholar 

  • Kumar A, Naushad M, Rana A et al (2017a) ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2017.06.116

    Google Scholar 

  • Kumar A, Shalini Sharma G et al (2017b) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A Chem 337:118–131. doi:10.1016/j.jphotochem.2017.01.010

    Article  CAS  Google Scholar 

  • Lee Y-J, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566. doi:10.1002/adma.200304588

    Article  CAS  Google Scholar 

  • Lee W, Chen Y (2003) Effect of bentonite on the physical properties and drug- release behavior of poly (aa-co-pegmea)/ bentonite nanocomposite hydrogels for mucoadhesive. J App Poly Sci 91:2934–2941

    Article  CAS  Google Scholar 

  • Lee WF, Chen YC (2004) Effect of hydrotalcite on the physical properties and drug-release behavior of nanocomposite hydrogels based on poly[acrylic acid-co-poly(ethylene glycol) methyl ether acrylate] gels. J Appl Polym Sci 94:692–699. doi:10.1002/app.20936

    Article  CAS  Google Scholar 

  • Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660. doi:10.1002/app.12624

    Article  CAS  Google Scholar 

  • Lee WF, Lee SC (2006) Effect of hydrotalcite on the swelling and mechanical behaviors for the hybrid nanocomposite hydrogels based on gelatin and hydrotalcite. J Appl Polym Sci 100:500–507. doi:10.1002/app.23219

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. doi:10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  • Lee S, Pérez-Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77:7204–7211. doi:10.1021/ac050484n

    Article  CAS  Google Scholar 

  • Lee WF, Tsao KT (2010) Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci 45:89–97. doi:10.1007/s10853-009-3896-7

    Article  CAS  Google Scholar 

  • Lee SB, Seo SM, Lim YM et al (2004) Preparation of alginate/poly (N-isopropylacrylamide) hydrogels using gamma-ray irradiation grafting. Macromol Res 12:269–275

    Article  CAS  Google Scholar 

  • Li HJ, Haraguchi K (2006) Mechanical and swelling/de-swelling properties of nanocomposite gel with high clay content. Polym Prepr Japan 55:1077. doi:10.1021/ma052468y

    Google Scholar 

  • Li P, Siddaramaiah Kim NH et al (2008) Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Compos Part B Eng 39:756–763. doi:10.1016/j.compositesb.2007.11.003

    Article  CAS  Google Scholar 

  • Li S, Liu X, Huang W et al (2011a) Magnetically assisted removal and separation of cationic dyes from aqueous solution by magnetic nanocomposite hydrogels. Polym Adv Technol 22:2439–2447. doi:10.1002/pat.1782

    Article  CAS  Google Scholar 

  • Li X, Hu A, Ye L (2011b) Structure and property of porous polyvinylalcohol hydrogels for microorganism immobilization. J Polym Environ 19:398–404. doi:10.1007/s10924-011-0289-1

    Article  CAS  Google Scholar 

  • Li C, Chen G, Sun J et al (2016) Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water. Appl Catal B Environ 188:39–47. doi:10.1016/j.apcatb.2016.01.054

    Article  CAS  Google Scholar 

  • Lima-Tenório MK, Tenório-Neto ET, Guilherme MR et al (2015) Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J 259:620–629. doi:10.1016/j.cej.2014.08.045

    Article  CAS  Google Scholar 

  • Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58:32–39. doi:10.1016/j.seppur.2007.07.007

    Article  CAS  Google Scholar 

  • Liu L, Cooke PH, Coffin DR et al (2004) Pectin and polyacrylamide composite hydrogels: effect of pectin on structural and dynamic mechanical properties. J Appl Polym Sci 92:1893–1901. doi:10.1002/app.20174

    Article  CAS  Google Scholar 

  • Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045. doi:10.1016/j.actbio.2008.01.012

    Article  CAS  Google Scholar 

  • Liu F, Wang J, Li L et al (2009) Adsorption of direct yellow 12 onto ordered mesoporous carbon and activated carbon. J Chem Eng Data 54:3043–3050. doi:10.1021/je900391p

    Article  CAS  Google Scholar 

  • Liu H, Liu M, Zhang L et al (2010) Dual-stimuli sensitive composites based on multi-walled carbon nanotubes and poly(N, N-diethylacrylamide-co-acrylic acid) hydrogels. React Funct Polym 70:294–300. doi:10.1016/j.reactfunctpolym.2010.02.002

    Article  CAS  Google Scholar 

  • Liu Z, Yang Z, Luo Y (2012a) Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-cosodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized carbon nanotubes. Polym Compos 33:665–674. doi:10.1002/pc.22180

  • Liu CD, Zhang ZX, Chan VMH et al (2012b) A gelatin-based hydrogel with $β$-cyclodextrin crosslinker for controlled drug release. In: Jobbágy Á (ed) 5th European conference of the international federation for medical and biological engineering: 14–18 September 2011, Budapest, Hungary. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1090–1093

    Google Scholar 

  • Liu Y, Meng H, Konst S et al (2014) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6:16982–16992. doi:10.1021/am504566v

    Article  CAS  Google Scholar 

  • Liu M, Huang J, Luo B, Zhou C (2015a) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31. doi:10.1016/j.ijbiomac.2015.03.059

    Article  CAS  Google Scholar 

  • Liu P, Jiang L, Zhu L et al (2015b) Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193. doi:10.1016/j.jiec.2014.08.014

    Article  CAS  Google Scholar 

  • Llanos GR, Seftont MV (2000) Immobilization of poly (ethylene glycol) onto a poly (viny1 alcohol) hydrogel: 2. Eval Thrombogenicity 27:1383–1391

    Google Scholar 

  • Lo C-W, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604. doi:10.1039/c1sm00011j

    Article  CAS  Google Scholar 

  • Lu B, Li T, Zhao H et al (2012) Graphene-based composite materials beneficial to wound healing. Nanoscale 4:2978. doi:10.1039/c2nr11958g

    Article  CAS  Google Scholar 

  • Luo W, Zhang W, Chen P, Fang Y (2005) Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via ??-ray irradiation technique. J Appl Polym Sci 96:1341–1346. doi:10.1002/app.21447

    Article  CAS  Google Scholar 

  • Luo YL, Wei QB, Xu F et al (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118:329–336. doi:10.1016/j.matchemphys.2009.07.063

    Article  CAS  Google Scholar 

  • Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228. doi:10.1016/j.eurpolymj.2007.02.026

    Article  CAS  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367

    Article  CAS  Google Scholar 

  • Maciel DJ, de Ferreira IL, da Costa GM, da Silva MR (2016) Nanocomposite hydrogels based on iota-carrageenan and maghemite: morphological, thermal and magnetic properties. Eur Polym J 76:147–155. doi:10.1016/j.eurpolymj.2016.01.043

    Article  CAS  Google Scholar 

  • Madhumathi K, Sudheesh Kumar PT, Abhilash S et al (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813. doi:10.1007/s10856-009-3877-z

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470. doi:10.1007/s00289-013-0966-4

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Etemadi H (2014) In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Mater Sci Eng, C 45:250–260. doi:10.1016/j.msec.2014.09.023

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Pourjavadi A, Zohuriaan-Mehr MJ (2006) A convenient one-step preparation of chitosan-poly(sodium acrylate-co-acrylamide) hydrogel hybrids with super-swelling properties. J Appl Polym Sci 99:1615–1619. doi:10.1002/app.22521

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J Engl. doi:10.1007/s13726-012-0066-6

    Google Scholar 

  • Mahdavinia GR, Baghban A, Zorofi S, Massoudi A (2014a) Kappa-carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water. J Mater Environ Sci 5:330–337

    CAS  Google Scholar 

  • Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014b) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587. doi:10.1016/j.jece.2014.05.020

    Article  CAS  Google Scholar 

  • Makino K, Suzuki K, Sakurai Y et al (1995) Electroosmotic flow on a poly(N-isopropylacrylamide) hydrogel surface. Colloids Surf A Physicochem Eng Asp 103:221–226. doi:10.1016/0927-7757(95)03285-L

    Article  CAS  Google Scholar 

  • Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61:492–501. doi:10.1016/j.chemosphere.2005.03.065

    Article  CAS  Google Scholar 

  • Mansoori Y, Atghia SV, Zamanloo MR et al (2010) Polymer-clay nanocomposites: free-radical grafting of polyacrylamide onto organophilic montmorillonite. Eur Polym J 46:1844–1853. doi:10.1016/j.eurpolymj.2010.07.006

    Article  CAS  Google Scholar 

  • Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C Polym Rev 36:405–430. doi:10.1080/15321799608015226

    Article  Google Scholar 

  • Mbhele ZH, Salemane MG, Van Sittert CGCE et al (2003) Fabrication and characterization of silver—polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024. doi:10.1021/cm034505a

    Article  CAS  Google Scholar 

  • Meena R, Prasad K, Siddhanta AK (2009) Development of a stable hydrogel network based on agar-kappa-carrageenan blend cross-linked with genipin. Food Hydrocoll 23:497–509. doi:10.1016/j.foodhyd.2008.03.008

    Article  CAS  Google Scholar 

  • Meenach SA, Hilt JZ, Anderson KW (2010) Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater 6:1039–1046. doi:10.1016/j.actbio.2009.10.017

    Article  CAS  Google Scholar 

  • Mellati A, Dai S, Bi J et al (2014) A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 4:63951–63961. doi:10.1039/C4RA12215A

    Article  CAS  Google Scholar 

  • Mittal A, Naushad M, Sharma G et al (2016a) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalin Water Treat 57:21863–21869. doi:10.1080/19443994.2015.1125805

    Article  CAS  Google Scholar 

  • Mittal H, Kumar V, Saruchi Ray SS (2016b) Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int J Biol Macromol 89:1–11. doi:10.1016/j.ijbiomac.2016.04.050

    Article  CAS  Google Scholar 

  • Miyake T, Asakawa T (2005) Recently developed catalytic processes with bimetallic catalysts. Appl Catal A Gen 280:47–53. doi:10.1016/j.apcata.2004.08.026

    Article  CAS  Google Scholar 

  • Moon YE, Jung G, Yun J, Il Kim H (2013) Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater Sci Eng B Solid State Mater Adv Technol 178:1097–1103. doi:10.1016/j.mseb.2013.07.002

    Article  CAS  Google Scholar 

  • Motshekga SC, Ray SS, Onyango MS, Momba MNB (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339. doi:10.1016/j.clay.2015.06.010

    Article  CAS  Google Scholar 

  • Murali Mohan Y, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48:158–164. doi:10.1016/j.polymer.2006.10.045

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2007) Preparation of novel metallic and bimetallic cross-linked poly(vinyl alcohol) nanocomposites under microwave irradiation. Macromol Rapid Commun 28:465–472. doi:10.1002/marc.200600735

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  • Naushad M, Vasudevan S, Sharma G et al (2015) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 3994:2237–2245. doi:10.1080/19443994.2015.1090914

    Google Scholar 

  • Naushad M, Ahamad T, Sharma G et al (2016a) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316. doi:10.1016/j.cej.2016.04.084

    Article  CAS  Google Scholar 

  • Naushad M, Vasudevan S, Sharma G, AloZ Kumar A (2016b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559

    Article  CAS  Google Scholar 

  • Naushad M, Sharma G, Kumar A et al (2017) Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2017.07.169

    Google Scholar 

  • Ni C, Zhu XX (2004) Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate. Eur Polym J 40:1075–1080. doi:10.1016/j.eurpolymj.2003.12.017

    Article  CAS  Google Scholar 

  • Nie X, Adalati A, Du J et al (2014) Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Appl Clay Sci 97–98:132–137. doi:10.1016/j.clay.2014.05.020

    Article  CAS  Google Scholar 

  • Nieto M, Nardecchia S, Peinado C et al (2010) Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption. Soft Matter 6:3533. doi:10.1039/C0SM00079E

    Article  CAS  Google Scholar 

  • Ninan N, Muthiah M, Park IK et al (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885. doi:10.1016/j.carbpol.2013.06.067

    Article  CAS  Google Scholar 

  • Nnadi F, Brave C (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Environ Manag 2:206–211

    Google Scholar 

  • Noori S, Kokabi M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinyl alcohol) /chitosan /montmorillonite nanocomposite hydrogel as wound dressing. Proc Mater Sci 11:152–156. doi:10.1016/j.mspro.2015.11.023

    Article  CAS  Google Scholar 

  • Noppakundilograt S, Sonjaipanich K, Thongchul N, Kiatkamjornwong S (2013) Syntheses, characterization, and antibacterial activity of chitosan grafted hydrogels and associated mica-containing nanocomposite hydrogels. J Appl Polym Sci 127:4927–4938. doi:10.1002/app.37612

    Article  CAS  Google Scholar 

  • Nor Hanisah Z, Yamin Y, Ahmad Faujan BH (2007) Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions. Res J Chem Environ 11:31–36. doi:10.1016/S1383-5866(02)00158-2

    Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 80(306):666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  • Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22:756–779. doi:10.1179/174328406X101319

    Article  CAS  Google Scholar 

  • Omidi M, Yadegari A, Tayebi L (2017) Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Adv 7:10638–10649. doi:10.1039/C6RA25340G

    Article  CAS  Google Scholar 

  • Pal S, Ghorai S, Das C et al (2012) Carboxymethyl tamarind-g-poly(acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. doi:10.1021/ie301134a

    Article  CAS  Google Scholar 

  • Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr Polym 83:1908–1915. doi:10.1016/j.carbpol.2010.10.054

    Article  CAS  Google Scholar 

  • Pandis C, Spanoudaki A, Kyritsis A et al (2011) Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci, Part B: Polym Phys 49:657–668. doi:10.1002/polb.22225

    Article  CAS  Google Scholar 

  • Papaphilippou P (2012) Multiresponsive polymer conetworks capable of responding to changes in pH, temperature, and magnetic field: synthesis, characterization, and evaluation of their

  • Papaphilippou PC, Pourgouris A, Marinica O et al (2011) Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate. J Magn Magn Mater 323:557–563. doi:10.1016/j.jmmm.2010.10.009

    Article  CAS  Google Scholar 

  • Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292:620–626. doi:10.1002/mame.200700004

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi:10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  CAS  Google Scholar 

  • Pathania D, Sharma G, Naushad M, Priya V (2014) A biopolymer-based hybrid cation exchanger pectin cerium(IV) iodate: synthesis, characterization, and analytical applications. Desalin Water Treat 3994:1–8. doi:10.1080/19443994.2014.967731

    Article  CAS  Google Scholar 

  • Pathania D, Gupta D, Al-Muhtaseb AH et al (2016a) Photocatalytic degradation of highly toxic dyes using chitosan-g-poly(acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol A Chem 329:61–68. doi:10.1016/j.jphotochem.2016.06.019

    Article  CAS  Google Scholar 

  • Pathania D, Gupta D, Kothiyal NC et al (2016b) Preparation of a novel chitosan-g-poly(acrylamide)/Zn nanocomposite hydrogel and its applications for controlled drug delivery of ofloxacin. Int J Biol Macromol 84:340–348. doi:10.1016/j.ijbiomac.2015.12.041

    Article  CAS  Google Scholar 

  • Pathania D, Katwal R, Sharma G et al (2016c) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374. doi:10.1016/j.ijbiomac.2016.02.073

    Article  CAS  Google Scholar 

  • Peng N, Hu D, Zeng J et al (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224. doi:10.1021/acssuschemeng.6b02178

    Article  CAS  Google Scholar 

  • Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12:221–231. doi:10.1016/j.cocis.2007.07.002

    Article  CAS  Google Scholar 

  • Piao Y, Chen B (2016) One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels. RSC Adv 6:6171–6181. doi:10.1039/C5RA20674J

    Article  CAS  Google Scholar 

  • Pourjavadi A, Mahdavinia GR (2006) Chitosan-g-Poly (Acrylic Acid)/ Kaolin superabsorbent composite : synthesis and characterization. Polym Plym Compos 14:203–212

    CAS  Google Scholar 

  • Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044. doi:10.1002/pi.4389

    Article  CAS  Google Scholar 

  • Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5:32263–32271. doi:10.1039/C4RA17103A

    Article  CAS  Google Scholar 

  • Pradhan AK, Rana PK, Sahoo PK (2015) Biodegradability and Swelling capacity of Kaolin based Chitosan-g-PHEMA Nanocomposite hydrogel. Int J Biol Macromol 74:620–626. doi:10.1016/j.ijbiomac.2014.12.024

    Article  CAS  Google Scholar 

  • Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751. doi:10.1039/c000041h

    Article  CAS  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151. doi:10.1111/j.1469-185X.1981.tb00345.x

    Article  CAS  Google Scholar 

  • Ramteke K (2012) Stimuli sensitive hydrogels in drug delivery systems. Int J Pharm Sci and Res 3:4604–4616

    Google Scholar 

  • Rao KM, Nagappan S, Seo DJ, Ha CS (2014) PH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl Clay Sci 97–98:33–42. doi:10.1016/j.clay.2014.06.002

    Article  CAS  Google Scholar 

  • Ravindra S, Mulaba-Bafubiandi AF, Rajinikanth V et al (2012) Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. J Inorg Organomet Polym Mater 22:1254–1262. doi:10.1007/s10904-012-9734-4

    Article  CAS  Google Scholar 

  • Reddy TT, Kano A, Maruyama A et al (2009) Synthesis and characterization of semi-interpenetrating polymer networks based on polyurethane and N-isopropylacrylamide for wound dressing. J Biomed Mater Res Part B Appl Biomater 88:32–40. doi:10.1002/jbm.b.31185

    Article  CAS  Google Scholar 

  • Reddy NN, Varaprasad K, Ravindra S et al (2011) Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 385:20–27. doi:10.1016/j.colsurfa.2011.05.006

    Article  CAS  Google Scholar 

  • Reddy PR, Varaprasad K, Sadiku R et al (2013) Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria. J Inorg Organomet Polym Mater 23:1054–1060. doi:10.1007/s10904-013-9886-x

    Article  CAS  Google Scholar 

  • Reddy PRS, Rao KM, Rao KSVK et al (2014) Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications. Macromol Res 22:832–842. doi:10.1007/s13233-014-2117-7

    Article  CAS  Google Scholar 

  • Regiel A, Kyzioł A, Arruebo M (2013) Chitosan-silver nanocomposites—modern antibacterial materials. Chemik 67:683–692

    CAS  Google Scholar 

  • Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301. doi:10.1016/j.progpolymsci.2009.10.008

    Article  CAS  Google Scholar 

  • Sadeghi M, Ghasemi N, Kazemi M (2012) Synthesis and swelling behavior of carrageenans—Graft-Poly (Sodium Acrylate)/kaolin superabsorbent hydrogel. Composites 16:113–118

    CAS  Google Scholar 

  • Saha S, Pal A, Kundu S et al (2010) Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893. doi:10.1021/la902950x

    Article  CAS  Google Scholar 

  • Sanna R, Sanna D, Alzari V et al (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Polym Sci, Part A: Polym Chem 50:4110–4118. doi:10.1002/pola.26215

    Article  CAS  Google Scholar 

  • Sant S, Tao SL, Fisher OZ et al (2012) Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 64:496–507. doi:10.1016/j.addr.2011.11.013

    Article  CAS  Google Scholar 

  • Santiago F, Mucientes AE, Osorio M, Rivera C (2007) Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour. Eur Polym J 43:1–9. doi:10.1016/j.eurpolymj.2006.07.023

    Article  CAS  Google Scholar 

  • Satarkar NS, Zach Hilt J (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4:11–16. doi:10.1016/j.actbio.2007.07.009

    Article  CAS  Google Scholar 

  • Sehga T, Rattan S (2010) Graft-copolymerization of N-vinyl-2-pyrrolidone onto isotactic polypropylene film by gamma radiation using peroxidation method. Indian J Pure Appl Phys 48:823–829

    Google Scholar 

  • Sen MY, Puskas JE (2008) Green polymer chemistry: telechelic poly(ethylene glycol)s via enzymatic catalysis. Am Chem Soc Polym Prepr Div Polym Chem 49:487–488. doi:10.1002/pola

    CAS  Google Scholar 

  • Shahid SA, Qidwai AA, Anwar F et al (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17:9397–9412. doi:10.3390/molecules17089397

    Article  CAS  Google Scholar 

  • Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421. doi:10.1016/j.cej.2014.04.074

    Article  CAS  Google Scholar 

  • Sharma R, Kaith BS, Kalia S et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45. doi:10.1016/j.jenvman.2015.07.044

    Article  CAS  Google Scholar 

  • Sharma G, Kumar A, Naushad M et al (2016a) Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior. J Ind Eng Chem 33:201–208. doi:10.1016/j.jiec.2015.10.011

    Article  CAS  Google Scholar 

  • Sharma G, Naushad M, Pathania D, Kumar A (2016b) A multifunctional nanocomposite pectin thorium(IV) tungstomolybdate for heavy metal separation and photoremediation of malachite green. Desalin Water Treat 57:19443–19455. doi:10.1080/19443994.2015.1096834

    Article  CAS  Google Scholar 

  • Sharma G, Alothman ZA, Kumar A et al (2017a) Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye. Nanotechnol Environ Eng 2:4. doi:10.1007/s41204-017-0014-y

    Article  Google Scholar 

  • Sharma G, Bhogal S, Naushad M et al (2017b) Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J Photochem Photobiol A Chem 347:235–243. doi:10.1016/j.jphotochem.2017.07.001

    Article  CAS  Google Scholar 

  • Sharma G, Kumar D, Kumar A et al (2017c) Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater Sci Eng, C 71:1216–1230. doi:10.1016/j.msec.2016.11.002

    Article  CAS  Google Scholar 

  • Sharma G, Naushad M, Al-Muhtaseb AH et al (2017d) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493. doi:10.1016/j.ijbiomac.2016.11.072

    Article  CAS  Google Scholar 

  • Sharma G, Naushad M, Kumar A et al (2017e) Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Saf Environ Prot 109:301–310. doi:10.1016/j.psep.2017.04.011

    Article  CAS  Google Scholar 

  • Sharma G, Thakur B, Naushad M et al (2017f) Fabrication and characterization of sodium dodecyl sulphate@ironsilicophosphate nanocomposite: ion exchange properties and selectivity for binary metal ions. Mater Chem Phys 193:129–139. doi:10.1016/j.matchemphys.2017.02.010

    Article  CAS  Google Scholar 

  • Sheeney-Haj-Ichia L, Sharabi G, Willner I (2002) Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv Funct Mater 12:27–32

    Article  CAS  Google Scholar 

  • Shen J, Yan B, Li T et al (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf 43:1476–1481. doi:10.1016/j.compositesa.2012.04.006

    Article  CAS  Google Scholar 

  • Shen M, Sun Y, Xu J et al (2014) Rheology and adhesion of poly(acrylic acid)/Laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30:1636–1642. doi:10.1021/la4045623

    Article  CAS  Google Scholar 

  • Shin MS, Kim SJ, Park SJ et al (2002) Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. J Appl Polym Sci 86:498–503. doi:10.1002/app.11008

    Article  CAS  Google Scholar 

  • Shin MK, Spinks GM, Shin SR et al (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715. doi:10.1002/adma.200802205

    Article  CAS  Google Scholar 

  • Shirsath SR, Hage AP, Zhou M et al (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination 281:429–437. doi:10.1016/j.desal.2011.08.031

    Article  CAS  Google Scholar 

  • Shukla RK, Tiwari A (2012) Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym 88:399–416. doi:10.1016/j.carbpol.2011.12.021

    Article  CAS  Google Scholar 

  • Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711. doi:10.1002/marc.201400239

    Article  CAS  Google Scholar 

  • Siengchin S, Karger-Kocsis J (2012) Polystyrene nanocomposites produced by melt-compounding with polymer-coated magnesium carbonate nanoparticles. J Reinf Plast Compos 31:145–152. doi:10.1177/0731684411433060

    Article  CAS  Google Scholar 

  • Singh B, Sharma N (2008) Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym 74:489–497. doi:10.1016/j.carbpol.2008.04.003

    Article  CAS  Google Scholar 

  • Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22:1023–1033. doi:10.1163/092050610X497881

    Article  CAS  Google Scholar 

  • Skelton S, Bostwick M, O’Connor K et al (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9:3825. doi:10.1039/c3sm27352k

    Article  CAS  Google Scholar 

  • Song SZ, Cardinal JR, Kim SH, Kim SW (1981) Progestin permeation through polymer membranes V: progesterone release from monolithic hydrogel devices. J Pharm Sci 70:216–219. doi:10.1002/jps.2600700226

    Article  CAS  Google Scholar 

  • Song F, Li X, Wang Q et al (2015) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 11:40–52. doi:10.1166/jbn.2015.1962

    Article  CAS  Google Scholar 

  • Souda P, Sreejith L (2015) Magnetic hydrogel for better adsorption of heavy metals from aqueous solutions. J Environ Chem Eng 3:1882–1891. doi:10.1016/j.jece.2015.03.007

    Article  CAS  Google Scholar 

  • Sudheesh Kumar PT, Srinivasan S, Lakshmanan VK et al (2011) β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 85:584–591. doi:10.1016/j.carbpol.2011.03.018

    Article  CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340. doi:10.1016/j.stam.2005.03.007

    Article  CAS  Google Scholar 

  • Sun J-Y, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. doi:10.1038/nature11409

    Article  CAS  Google Scholar 

  • Swetha M, Sahithi K, Moorthi A et al (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4. doi:10.1016/j.ijbiomac.2010.03.015

    Article  CAS  Google Scholar 

  • Takeno H, Kimura Y (2016) Molecularweight effects on tensile properties of blend hydrogels composed of clay and polymers. Polym (United Kingdom) 85:47–54. doi:10.1016/j.polymer.2016.01.008

    CAS  Google Scholar 

  • Tan S, Ladewig K, Fu Q et al (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 35:1166–1184. doi:10.1002/marc.201400080

    Article  CAS  Google Scholar 

  • Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9. doi:10.1016/j.progpolymsci.2004.11.003

    Article  CAS  Google Scholar 

  • Tang Y, Ma D, Zhu L (2014) Sorption behavior of methyl violet onto poly(acrylic acid-co-acrylamide)/kaolin hydrogel composite. Polym Plast Technol Eng 53:851–857. doi:10.1080/03602559.2014.886052

    Article  CAS  Google Scholar 

  • Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos Part A Appl Sci Manuf 88:226–233. doi:10.1016/j.compositesa.2016.06.002

    Article  CAS  Google Scholar 

  • Thakur M, Sharma G, Ahamad T et al (2017) Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf B Biointerfaces 157:456–463. doi:10.1016/j.colsurfb.2017.06.018

    Article  CAS  Google Scholar 

  • Thomas V, Namdeo M, Murali Mohan Y et al (2007a) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci Part A 45:107–119. doi:10.1080/10601320701683470

    Article  CAS  Google Scholar 

  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007b) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395. doi:10.1016/j.jcis.2007.06.068

    Article  CAS  Google Scholar 

  • Tiwari A, Grailer JJ, Pilla S et al (2009) Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5:3441–3452. doi:10.1016/j.actbio.2009.06.001

    Article  CAS  Google Scholar 

  • Tongwa P, Nygaard R, Bai B (2013) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794. doi:10.1002/app.38258

    Article  CAS  Google Scholar 

  • Torkkeli A (2003) Droplet microfluidics on a planar surface. VTT Publ 55:3–194

  • Usuki A, Kawasumi M, Kojima Y et al (1993) Swelling behavior of montmorillonite cation exchanged for omega-amino acids by epsilon-caprolactam. J Mater Res 8:1174–1178. doi:10.1557/jmr.1993.1174

    Article  CAS  Google Scholar 

  • Vaia RA, Giannelis EP (1997) Polymer melt intercalation in Organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000–8009. doi:10.1021/ma9603488

    Article  CAS  Google Scholar 

  • Varaprasad K, Raghavendra GM, Jayaramudu T et al (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng, C. doi:10.1016/j.msec.2017.05.096

    Google Scholar 

  • Varshney L (2007) Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 255:343–349. doi:10.1016/j.nimb.2006.11.101

    Article  CAS  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026. doi:10.1179/174328408X341708

    Article  CAS  Google Scholar 

  • Visintin RFG, Lapasin R, Vignati E et al (2005) Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 21:6240–6249. doi:10.1021/la050705k

    Article  CAS  Google Scholar 

  • Wan YZ, Wang YL, Luo HL et al (2000) Carbon fiber-reinforced gelatin composites. I. Preparation and mechanical properties. J Appl Polym Sci 75:987–993

    Article  CAS  Google Scholar 

  • Wang Y, Chen D (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interface Sci 372:245–251. doi:10.1016/j.jcis.2012.01.041

    Article  CAS  Google Scholar 

  • Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91. doi:10.1016/j.carbpol.2010.04.026

    Article  CAS  Google Scholar 

  • Wang J, Wu W (2005) Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels. Eur Polym J 41:1143–1151. doi:10.1016/j.eurpolymj.2004.11.034

    Article  CAS  Google Scholar 

  • Wang T, Liu D, Lian C et al (2011a) Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. React Funct Polym 71:447–454. doi:10.1016/j.reactfunctpolym.2011.01.004

    Article  CAS  Google Scholar 

  • Wang Y, Ma J, Yang S, Xu J (2011b) PDMAA/Clay nanocomposite hydrogels based on two different initiations. Colloids Surfaces A Physicochem Eng Asp 390:20–24. doi:10.1016/j.colsurfa.2011.08.029

    Article  CAS  Google Scholar 

  • Wang T, Liu D, Lian C et al (2012a) Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels. Soft Matter 8:774–783. doi:10.1039/C1SM06484C

    Article  CAS  Google Scholar 

  • Wang Y, Dong A, Yuan Z, Chen D (2012b) Fabrication and characterization of temperature-, pH- and magnetic-field-sensitive organic/inorganic hybrid poly (ethylene glycol)-based hydrogels. Colloids Surfaces A Physicochem Eng Asp 415:68–76. doi:10.1016/j.colsurfa.2012.10.009

    Article  CAS  Google Scholar 

  • Wang E, Desai MS, Lee S-W (2013a) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830. doi:10.1021/nl401088b

    Article  CAS  Google Scholar 

  • Wang M, Yuan D, Fan X et al (2013b) Polymer nanocomposite hydrogels exhibiting both dynamic restructuring and unusual adhesive properties. Langmuir 29:7087–7095. doi:10.1021/la401269p

    Article  CAS  Google Scholar 

  • Wang T, Sun W, Liu X et al (2013c) Promoted cell proliferation and mechanical relaxation of nanocomposite hydrogels prepared in cell culture medium. React Funct Polym 73:683–689. doi:10.1016/j.reactfunctpolym.2013.02.012

    Article  CAS  Google Scholar 

  • Wang Y, Wang W, Wang A (2013d) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J. doi:10.1016/j.cej.2013.04.090

    Google Scholar 

  • Wei X, Chen Q, Peng LM et al (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113:17002–17005. doi:10.1021/jp902471q

    Article  CAS  Google Scholar 

  • Wei L, Hu N, Zhang Y (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials (Basel) 3:4066–4079. doi:10.3390/ma3074066

    Article  CAS  Google Scholar 

  • Wu J, Gong X, Fan Y, Xia H (2011) Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter 7:6205. doi:10.1039/c1sm05386h

    Article  CAS  Google Scholar 

  • Xia M, Wu W, Liu F et al (2015) Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. Eur Polym J 69:472–482. doi:10.1016/j.eurpolymj.2015.03.072

    Article  CAS  Google Scholar 

  • Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer (Guildf) 49:5064–5071. doi:10.1016/j.polymer.2008.09.021

    Article  CAS  Google Scholar 

  • Xiong L, Zhu M, Hu X et al (2009) Ultrahigh deformability and transparence of hectorite clay nanocomposite hydrogels with nimble pH response. Macromolecules 42:3811–3817. doi:10.1021/ma900284a

    Article  CAS  Google Scholar 

  • Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362. doi:10.1021/nn1027104

    Article  CAS  Google Scholar 

  • Xue P, Lu R, Chen G et al (2007) Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem A Eur J 13:8231–8239. doi:10.1002/chem.200700321

    Article  CAS  Google Scholar 

  • Xue X, Cheng R, Shi L et al (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27. doi:10.1007/s10311-016-0595-x

    Article  CAS  Google Scholar 

  • Engineering B, Cha C, Shin SR, et al Carbon-based nanomaterials : multifunctional materials for

  • Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43. doi:10.1016/j.ijbiomac.2015.04.032

    Article  CAS  Google Scholar 

  • Yang J, Zhao J (2014) Preparation and mechanical properties of silica nanoparticles reinforced composite hydrogels. Mater Lett 120:36–38. doi:10.1016/j.matlet.2014.01.078

    Article  CAS  Google Scholar 

  • Yang X, Liu Q, Chen X et al (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined irradiation and freeze-thawing. Carbohydr Polym 73:401–408. doi:10.1016/j.carbpol.2007.12.008

    Article  CAS  Google Scholar 

  • Yang J, Deng L-H, Han C-R et al (2013a) Synthetic and viscoelastic behaviors of silicananoparticle reinforced poly(acrylamide) core–shell nanocomposite hydrogels. Soft Matter 9:1220–1230. doi:10.1039/C2SM27233D

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F et al (2013b) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237. doi:10.1007/s10570-012-9841-y

    Article  CAS  Google Scholar 

  • Yang J, Zhao JJ, Han CR et al (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21:541–551. doi:10.1007/s10570-013-0111-4

    Article  CAS  Google Scholar 

  • Yano K, Usuki A, Okada A et al (1993) Synthesis and properties of polyimide—clay hybrid. J Polym Sci, Part A: Polym Chem 31:2493–2498. doi:10.1002/pola.1993.080311009

    Article  CAS  Google Scholar 

  • Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Pulsatile drug delivery systems using hydrogels. Adv Drug Deliv Rev 11:85–108. doi:10.1016/0169-409X(93)90028-3

    Article  CAS  Google Scholar 

  • Yu Y, Li Y, Liu L et al (2011a) Synthesis and characterization of pH- and thermoresponsive Poly(N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan. J Polym Res 18:283–291. doi:10.1007/s10965-010-9417-1

    Article  CAS  Google Scholar 

  • Yu Y, Zhu C, Liu Y et al (2011b) Synthesis and characterization of N-maleyl Chitosan-cross-linked poly(acrylamide)/montmorillonite nanocomposite hydrogels. Polym Plast Technol Eng 50:525–529. doi:10.1080/03602559.2010.543735

    Article  CAS  Google Scholar 

  • Yu H-R, Hu J-Q, Liu Z et al (2017) Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J Hazard Mater 323:632–640. doi:10.1016/j.jhazmat.2016.10.024

    Article  CAS  Google Scholar 

  • Zaharia A, Sarbu A, Radu AL et al (2015) Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels. Appl Clay Sci 103:46–54. doi:10.1016/j.clay.2014.11.009

    Article  CAS  Google Scholar 

  • Zainal Z, Hui LK, Hussein MZ et al (2009) Characterization of TiO2-Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. J Hazard Mater 164:138–145. doi:10.1016/j.jhazmat.2008.07.154

    Article  CAS  Google Scholar 

  • Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67:737–745. doi:10.1016/j.reactfunctpolym.2007.05.001

    Article  CAS  Google Scholar 

  • Zhang X-Z, Zhang J-T, Zhuo R-X, Chu C-C (2002) Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide) hydrogel. Polymer (Guildf) 43:4823–4827. doi:10.1016/S0032-3861(02)00299-9

    Article  CAS  Google Scholar 

  • Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914. doi:10.1021/ja031523k

    Article  CAS  Google Scholar 

  • Zhang YT, Zhi TT, Zhang L et al (2009) Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer (Guildf) 50:5693–5700. doi:10.1016/j.polymer.2009.09.067

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q, Wang A (2010) In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater 6:445–454. doi:10.1016/j.actbio.2009.07.001

    Article  CAS  Google Scholar 

  • Zhang X, Pint CL, Lee MH et al (2011) Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244. doi:10.1021/nl201503e

    Article  CAS  Google Scholar 

  • Zhang L, Wang L, Guo B, Ma PX (2014a) Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 103:110–118. doi:10.1016/j.carbpol.2013.12.017

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang T, He T, Chen L (2014b) Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl Clay Sci 90:1–5. doi:10.1016/j.clay.2014.01.003

    Article  CAS  Google Scholar 

  • Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171:671–677. doi:10.1016/j.jhazmat.2009.06.053

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Zhang Q (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255. doi:10.1007/s00396-010-2342-3

    Article  CAS  Google Scholar 

  • Zhu M, Xiong L, Wang T et al (2010) High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. React Funct Polym 70:267–271. doi:10.1016/j.reactfunctpolym.2010.01.003

    Article  CAS  Google Scholar 

  • Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300. doi:10.1039/c2jm16699b

    Article  CAS  Google Scholar 

  • Zolfaghari R, Katbab AA, Nabavizadeh J et al (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103. doi:10.1002/app.23193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaurav Sharma or Mu. Naushad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Thakur, B., Naushad, M. et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 16, 113–146 (2018). https://doi.org/10.1007/s10311-017-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0671-x

Keywords

Navigation