Skip to main content

Advertisement

Log in

Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Pollution due to heavy metals is currently a serious problems affecting water bodies. The removal of heavy metals is of great concern due to their toxicity at trace levels and accumulation in the biosystem. Here we review the technical feasibility of biosorption and ion exchange methods for the removal of various heavy metals from the aqueous media. Chemical pretreatment of low-cost biosorbents are presented. Chemically modified biosorbents exhibit far better adsorption capacities than unmodified ones. We also highlighted the effect of pH on the biosorption for maximal uptake of heavy metals, because pH modifies the surface charge of the biosorbent as well as the speciation of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted with permission from Lu et al. (2016). Copyright 2016 American Chemical Society

Fig. 2

Adapted with permission from Lu et al. (2016) Copyright 2016 American Chemical Society

Fig. 3
Scheme 1
Fig. 4

Reprinted from Ahad et al. (2016)

Fig. 5

Reprinted from Ahad et al. (2016)

Fig. 6

Adapted with permission from Guo et al. (2018a). Copyright 2018 American Chemical Society

Fig. 7

Adapted with permission from Peng et al. Copyright 2018 American Chemical Society

Fig. 8

Reprinted from Gupta et al. (2011) and Santos et al. (2012)

Fig. 9

Adapted with permission from Mao et al. (2013) Copyright 2013 American Chemical Society

Scheme 2
Fig. 10
Fig. 11

Reprinted from Bhat et al. (2015)

Fig. 12

Adapted with permission from Wang et al. (2013). Copyright 2013 American Chemical Society

Fig. 13

Adapted with permission from Zhang et al. (2017). Copyright 2017 American Chemical Society

Fig. 14

Adapted with permission from Zhang et al. (2017). Copyright 2017 American Chemical Society

Fig. 15

Adapted with permission from Zhang et al. (2017). Copyright 2017 American Chemical Society

Fig. 16

Similar content being viewed by others

Abbreviations

K d :

Distribution coefficient (mL g−1)

K 1 :

Rate constant of first-order adsorption

K 2 :

Rate constant for pseudo-second-order model

q e :

Amount of solute adsorbed at equilibrium condition

q max :

Saturated monolayer adsorption capacity

K L :

Sorption equilibrium constant

K S :

Sips constant

C S :

Adsorbate solubility at a given temperature

K F :

Characteristic constant related to the adsorption capacity

C e :

Equilibrium concentration

C 0 :

Initial metal ion concentrations

n :

Characteristic constant related to adsorption intensity or degree of favorability of adsorption

b :

Temkin constant in relation to heat of sorption (kJ mol−1)

a :

Temkin isotherm constant (L g−1)

K H :

Halsey constants

n H :

Halsey constants

β :

A constant (proportional to the liquid molar volume)

E 0 :

Solid characteristic energy toward a reference compound

θ :

Degree of surface coverage

K FH :

Equilibrium constant of adsorption

n FH :

Number of metal ions occupying sorption sites

γ :

Sips parameter

References

  • Abdolali A, Ngo HH, Guo W, Lu S, Chen SS, Nguyen NC, Zhang X, Wang J, Wu Y (2016) A breakthrough biosorbent in removing heavy metals: equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci Total Environ 542:603–611

    Article  CAS  Google Scholar 

  • Abolhasani J, Khanmiri RH, Kalhor EG, Hassanpour A, Asgharinezhad AA, Shekari N, Fathi A (2015) An Fe3O4@SiO2@polypyrrole magnetic nanocomposite for the extraction and preconcentration of Cd (II) and Ni (II). Anal Methods 7:313

    Article  CAS  Google Scholar 

  • Ahad S, Bashir A, Manzoor T, Pandith AH (2016) Exploring the ion exchange and separation capabilities of thermally stable acrylamide zirconium (IV) sulphosalicylate (AaZrSs) composite material. RSC Adv 6:35914–35927

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2005) Removal of heavy metals from waste tea leaves from aqueous solution. Eng Life Sci 5:158–162

    Article  CAS  Google Scholar 

  • Alhendawi MHH (2013) Synthesis and structural characterization of a new chiral porous hybrid organic–inorganic material based on γ-zirconium phosphates and l-(+)-phosphoserine. Solid State Chem 201:24–28

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Alothman ZA, Alshehri SM (2016) Synthesis and characterization of Fe3O4@TSC nanocomposite: Highly efficient removal of toxic metal ions from aqueous medium. RSC Adv. https://doi.org/10.1039/C5RA27525C

    Article  Google Scholar 

  • Alvarez AE, Garcıa SA, Querol X (2003) Purification of metal electroplating wastewaters using zeolites. Water Res 37:4855–4862

    Article  CAS  Google Scholar 

  • Alyuz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167:482–488

    Article  CAS  Google Scholar 

  • Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458

    Article  CAS  Google Scholar 

  • Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317:490–493

    Article  CAS  Google Scholar 

  • Ballav N, Das R, Giri S, Muliw AM, Pillay K, Maity A (2018) l-cysteine doped polypyrrole (PPy@l-Cyst): a super adsorbent for the rapid removal of Hg+2 and efficient catalytic activity of the spent adsorbent for reuse. J Chem Eng. https://doi.org/10.1016/j.cej.2018.01.093

    Article  Google Scholar 

  • Bashir A, Ahad S, Pandith AH (2016) Soft template assisted synthesis of zirconium resorcinol phosphate nanocomposite material for the uptake of heavy-metal ions. Ind Eng Chem Res 55:4820–4829

    Article  CAS  Google Scholar 

  • Bhat MA, Chisti H, Shah SA (2015) Removal of heavy metal ions from water by cross linked potato di-starch phosphate polymer. Separ Sci Technol 50:1741–1747

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2006) Adsorption of chromium(VI) from water by clays. Ind Eng Chem Res 45:7232–7240

    Article  CAS  Google Scholar 

  • Bhaumika M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  CAS  Google Scholar 

  • Blocher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK, Matis KA (2003) Hybrid flotation–membrane filtration process for the removal of heavy metal ions from wastewater. Water Res 37:4018–4026

    Article  CAS  Google Scholar 

  • Boccelli DL, Small MJ, Dzombak D (2005) Enhanced coagulation for satisfying the arsenic maximum contaminant level under variable and uncertain conditions. Environ Sci Technol 39:6501–6507

    Article  CAS  Google Scholar 

  • Bohli T, Ouederni A, Fiol N, Villaescusa I (2012) Uptake of Cd2+and Ni2+ metal ions from aqueous solutions by activated carbons derived from waste olive stones. J Chem Eng Appl 3:232–236

    CAS  Google Scholar 

  • Caputo D, Pepe F (2007) Experiments and data processing of ion exchange equilibria involving Italian natural zeolites—a review. Microporous Mesoporous Mater 105:222–231

    Article  CAS  Google Scholar 

  • Chanthateyanonth R, Ruchirawat S, Srisitthiratkul C (2010) Preparation of new water soluble chitosan containing hyperbranched-vinylsulfonic acid sodium salt and their antimicrobial activities and chelation with metals. J Appl Polym Sci 116:2074–2082

    CAS  Google Scholar 

  • Chauhan K, Singh P, Singhal RK (2015) New chitosan–thiomer: an efficient colorimetric sensor and effective sorbent for mercury at ultralow concentration. ACS Appl Mater Interfaces 7:26069–26078

    Article  CAS  Google Scholar 

  • Chen YH, Chen YD (2011) Kinetic study of Cu (II) adsorption on nano-sized BaTiO3and SrTiO3 photocatalysts. J Hazard Mater 185:168–173

    Article  CAS  Google Scholar 

  • Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78

    Article  CAS  Google Scholar 

  • Das D, Basak G, Lakshmi V, Das N (2012) Kinetics and equilibrium studies on removal of zinc (II) by untreated and anionic surfactant treated dead biomass of yeast: batch and column mode. J Biochem Eng 64:30–47

    Article  CAS  Google Scholar 

  • Davis JA, Leckie JO (1978) Surface properties of amorphous iron oxy hydroxide and adsorption of metal ions. J Colloid Interface Sci 67:90–107

    Article  CAS  Google Scholar 

  • Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  CAS  Google Scholar 

  • Dissanayake DMREA, Wijesinghe WMKEH, Iqbal SS, Priyantha N, Iqbal MCM (2016) Isotherm and kinetic study on Ni (II) and Pb(II) biosorption by the fern Asplenium nidus L. Ecological Eng 88:237–241

    Article  Google Scholar 

  • Du Z, Zheng T, Wang P, Hao L, Wang Y (2016) Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour Technol 201:41–49

    Article  CAS  Google Scholar 

  • El-Hendawy AA (2003) Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41:713–722

    Article  CAS  Google Scholar 

  • Fadzil F, Ibrahim S, Hanafiah MAKM (2016) Adsorption of lead (II) onto organic acid modified rubber leaf powder: batch and column studies. Process Saf Environ Protect 100:1–8

    Article  CAS  Google Scholar 

  • Fallah SM, He JQ, Rothenberger A, Kanatzidis MG (2011) Ion-exchangeable cobalt polysulfide chalcogel. J Am Chem Soc 133:1200–1202

    Article  CAS  Google Scholar 

  • Fard ZH, Malliakas CD, Mertz JL, Kanatzidis MG (2015a) Direct extraction of Ag+ and Hg2+ from cyanide complexes and mode of binding by the layered K2MgSn2S6 (KMS-2). Chem Mater 27:1925–1928

    Article  CAS  Google Scholar 

  • Fard ZH, Islam SM, Kanatzidis MG (2015b) Porous amorphous chalcogenides as selective adsorbents for heavy metals. Chem Mater 27:6189–6192

    Article  CAS  Google Scholar 

  • Farooq U, Khan MA, Athar M, Kozinski MJA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. J Chem Eng 171:400–410

    Article  CAS  Google Scholar 

  • Fathima SZ, Pandith AH (2016) Synthesis and characterization of zirconium-resorcinol phosphate; a new hybrid cation exchanger and dye adsorbent for water treatment. Mater Sci Forum 842:196–208. https://doi.org/10.4028/www.scientific.net/MSF.842.196

    Article  Google Scholar 

  • Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) Biosorption of heavy metalsfrom aqueous solutions by chemically modified orange peel. J Hazard Mater 185:49–54

    Article  CAS  Google Scholar 

  • Flora SJ, Flora G, Saxena G, Mishra M (2007) Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol 15:26–47

    Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspective on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1992) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44

    Article  CAS  Google Scholar 

  • Gueu S, Yao B, Adouby K, Ado G (2007) Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int J Environ Sci Technol 4:11–17

    Article  CAS  Google Scholar 

  • Guo H, Zhang S, Kou Z, Zhai S, Maa W, Yang Y (2015) Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. Carbohydr Polym 115:177–185

    Article  CAS  Google Scholar 

  • Guo S, Wu K, Gao Y, Liu L, Zhu X, Li X, Zhang F (2018a) Efficient removal of Zn (II), Pb(II), and Cd (II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity. J Chem Eng Data. https://doi.org/10.1021/acs.jced.8b00526

    Article  Google Scholar 

  • Guo D-M, An Q-D, Xiao Z-Y, Zhai S-R, Yang D-J (2018b) Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr Polym 202:306–314

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  Google Scholar 

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  Google Scholar 

  • Hasanzadeh R, Moghadam PN, Laleh NB, Zare EN (2016) Sulfonated magnetic nanocomposite based on reactive PGMA-MAn copolymer@Fe3O4 nanoparticles: effective removal of Cu (II) ions from aqueous solutions. Int J Polym Sci. https://doi.org/10.1155/2016/2610541

    Article  Google Scholar 

  • Horiguchi H, Teranishi H, Niiya K, Aoshima K, Katoh T, Sakurangana N, Kasuya M (1994) Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch Toxicol 68:632

    Article  CAS  Google Scholar 

  • Hossain A, Bhattacharyya SR, Aditya G (2015) Biosorption of cadmium by waste shell dust of fresh water mussel Lamellidens marginalis: implications for metal bioremediation. ACS Sustain Chem Eng 3:1–8

    Article  CAS  Google Scholar 

  • Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals Cu(II), Cr(VI) and Ni(II) from industrial effluent and modeling of copper reduction. Water Res 39:610–616

    Article  CAS  Google Scholar 

  • Imamoglu M, Tekir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228:108–113

    Article  CAS  Google Scholar 

  • Jawor A, Hoek EMV (2010) Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration. Environ Sci Technol 44:2570–2576

    Article  CAS  Google Scholar 

  • Joseph T, Dubey B, McBean EA (2015) Human health risk assessment from arsenic exposures in Bangladesh. Sci Total Environ 527:552–560

    Article  CAS  Google Scholar 

  • Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  CAS  Google Scholar 

  • Karnitz JO, Gurgel LVA, Melo JCP, Botaro VR, Melo TMS, Gil RPF, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98:1291–1297

    Article  CAS  Google Scholar 

  • Kesraouiouki S, Cheeseman CR, Perry R (1994) Natural zeolite utilization in pollution control—a review of applications to metal effluents. J Chem Technol Biotechnol 59:221–231

    Google Scholar 

  • Khawar A, Aslam Z, Javed S, Abbas A (2018) Pb(II) biosorption using DAP/EDTA-modified biopolymer (chitosan). Chem Eng Commun. https://doi.org/10.1080/00986445.2018.1460598

    Article  Google Scholar 

  • Khokhar A, Siddique Z, Misbah (2015) Removal of heavy metal ions by chemically treated Melia azedarach L. leaves. J Environ Chem Eng 3:944–952

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521

    Article  CAS  Google Scholar 

  • Kowalczyk P, Sprynskyy M, Terzyk AP (2006) Porous structure of natural and modified clinoptilolites. J Colloid Interface Sci 297:77–85

    Article  CAS  Google Scholar 

  • Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MAR, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436

    Article  CAS  Google Scholar 

  • Kumar R, Barakat MA, Alseroury FA (2017) Oxidized g-C3N4/polyaniline nanofiber composite for the selective removal of hexavalent chromium. Sci Rep 7:12850. https://doi.org/10.1038/s41598-017-12850-1

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2005) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physicochemical treatment techniques for wastewater laden with heavy metals. J Chem Eng 118:83–98

    Article  CAS  Google Scholar 

  • Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Poly (itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd (II) Uptake. Langmuir 40:120–131

    Article  CAS  Google Scholar 

  • Lakouraj MM, Mojerlou F, Zare EN (2014a) Nanogel and super paramagnetic nanocomposite based on alginate for sorption of heavy metal ions. Carbohydr Polym 106:34–41

    Article  CAS  Google Scholar 

  • Lakouraj MM, Hasanzadeh F, Zare EN (2014b) Nanogel and super-paramagnetic nanocomposite of thiacalix[4]arene functionalized chitosan: synthesis, characterization and heavy metal sorption. Iran Polym J. https://doi.org/10.1007/s13726-014-0287-y

    Article  Google Scholar 

  • Lara MAM, Blazquez G, Ronda A, Perez A, Calero M (2013) Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive Stone. Ind Eng Chem Res 52:10809–10819

    Article  CAS  Google Scholar 

  • Li JR, Wang X, Yuan BL, Fu ML (2014) Layered chalcogenide for Cu2 + removal by ion-exchange from wastewater. J Mol Liq 200:205–2012

    Article  CAS  Google Scholar 

  • Liao J, Varotsis C, Kanatzidis MG (1993) Synthesis structure and properties of six novel alkali metal tin sulfides: K2Sn2S8, α-Rb2Sn2S8, β-Rb2Sn2S8, K2Sn2S5, Cs2Sn2S6 and Cs2SnS14. Inorg Chem 32:2453–2462

    Article  CAS  Google Scholar 

  • Liu D, Li Z, Li W, Zhong Z, Xu J, Ren J, Ma Z (2013a) Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind Eng Chem Res 52:11036–11044

    Article  CAS  Google Scholar 

  • Liu B, Lv X, Meng X, Guangli YuD (2013b) Wang. removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. J Chem Eng 220:412–419

    Article  CAS  Google Scholar 

  • Lu X, Wang F, Li XY, Shih K, Zeng EY (2016) Adsorption and thermal stabilization of Pb2+and Cu2+by zeolite. Ind Eng Chem Res 55:8767–8773

    Article  CAS  Google Scholar 

  • Ma S, Chen Q, Li H, Wang P, Islam SM, Gu Q, Yang X, Kanatzidis MG (2014) Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J Mater Chem A 2:10280

    Article  CAS  Google Scholar 

  • Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X, Kanatzidis MG (2015a) Efficient uranium capture by polysulfide/layered double hydroxide composite. J Am Chem Soc 137:3670–3677

    Article  CAS  Google Scholar 

  • Ma X, Liu X, Anderson DP, Chang PR (2015b) Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem 181:133–139

    Article  CAS  Google Scholar 

  • Ma L, Wang Q, Islam SM, Liu Y, Ma S, Kanatzidis MG (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS4 2− Ion. J Am Chem Soc 138:2858–2866

    Article  CAS  Google Scholar 

  • Ma L, Islam SM, Liu H, Zhao J, Sun G, Li H, Ma S, Kanatzidis MG (2017) Selective and efficient removal of toxic oxoanions of As (III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS4 2−. Chem Mater 29:3274–3284

    Article  CAS  Google Scholar 

  • Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Comparison of different methods for the point of zero charge determination of NiO. Ind Eng Chem Res 50:10017–10023

    Article  CAS  Google Scholar 

  • Mallampati R, Xuanjun L, Adin A, Valiyaveettil S (2015) Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water. ACS Sustain Chem Eng 3:1117–1124

    Article  CAS  Google Scholar 

  • Manonmani S, Selvaraj K, Pattabhi S (2003) Removal of hexavalent chromium using distillery sludge. Bioresour Technol 89:207–211

    Article  CAS  Google Scholar 

  • Manos MJ, Kanatzidis MG (2009) Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3−xS6 (KMS-1). J Am Chem Soc 131:6599–6607

    Article  CAS  Google Scholar 

  • Manos MJ, Petkov VG, Kanatzidis MG (2009) H2xMnxSn3−xS6 (X = 0.11–0.25): a novel reusable sorbent for highly specific mercury capture under extreme pH conditions. Adv Funct Mater 19:1087–1092

    Article  CAS  Google Scholar 

  • Mao J, Won SW, Yun YS (2013) Development of poly (acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of Cd(II) from aqueous solution. Ind Eng Chem Res 52:6446–6452

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764

    Article  CAS  Google Scholar 

  • McCarthy TJ, Kanatzidis MG (1995) Synthesis in molten alkali metal polyselenophosphate fluxes: a new family of transition metal selenophosphate compounds, A2MP2Se6 (A = K, Rb, Cs; M = Mn, Fe) and A2M’2P2Se6 (A = K, Cs; M′ = Cu, Ag). Inorg Chem 34:1257–1267

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Krowiak AW (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  Google Scholar 

  • Mishra AK, Sharma AK (2011) Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd(II) from aqueous solution. Int J Biol Macromol 49:504–512

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Muhammad N, Jeremy P, Michael P, Smith D, Wheatley AD (1998) 24th WEDC Conference, Islamabad, Pakistan, pp 346–349

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  Google Scholar 

  • Ogbodu RO, Omorogie MO, Unuabonah EI, Babalola JO (2015) Biosorption of heavy metalsfrom aqueous solutions by Parkia biglobosa biomass: equilibrium, kinetics, and thermodynamic studies. Environ Prog Sustain Energy 34:1694–1704

    Article  CAS  Google Scholar 

  • Oh Y, Morris CD, Kanatzidis MG (2012) Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J Am Chem Soc 134:14604

    Article  CAS  Google Scholar 

  • Ou H, Tan W, Niu CH, Feng R (2015) Enhancement of the stability of biosorbents for metal-ion adsorption. Ind Eng Chem Res 54:6100–6107

    Article  CAS  Google Scholar 

  • Ozdes D, Gundogdu A, Kemer B, Duran C, Kucuk M, Soylak M (2014) Assessment of kinetics, thermodynamics and equilibrium parameters of Cr(VI) biosorption onto Pinus brutia ten. Can J Chem Eng 92:139–147

    Article  CAS  Google Scholar 

  • Papadopoulos A, Fatta D, Parperis K, Mentzis A, Harambous KJ, Loizidou M (2004) Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep Purif Technol 39:181–188

    Article  CAS  Google Scholar 

  • Park D, Yun Y, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Peng XW, Zhong LX, Ren JL, Sun RC (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916

    Article  CAS  Google Scholar 

  • Peng S, Meng H, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu (II) adsorption. Ind Eng Chem Res 53:2106–2113

    Article  CAS  Google Scholar 

  • Prasanna SV, Kamath PV, Shivakumara C (2007) Synthesis and characterization of layered double hydroxides. (LDHs) with intercalated chromate ions. Mater Res Bull 42:1028–1029

    Article  CAS  Google Scholar 

  • Qu R, Niu Y, Sun C, Ji C, Wang C, Chen G (2006) Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester- and amino-terminated dendrimer-like polyamidoamine polymer. Microporous Mesoporous Mater 97:58–65

    Article  CAS  Google Scholar 

  • Rabago JJS, Ramos RL (2016) Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions. J Environ Manag 169:303–312

    Article  CAS  Google Scholar 

  • Radwan AA, Alanazi FK, Alsarra IA (2010) Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal Ions (M+n). Molecules 15:6257–6268

    Article  CAS  Google Scholar 

  • Rathore E, Pal P, Biswas K (2017) Layered metal chalcophosphate (K-MPS-1) for efficient, selective, and ppb level sequestration of Pb from water. J Phys Chem C 121:7959–7966

    Article  CAS  Google Scholar 

  • Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5:29885

    Article  CAS  Google Scholar 

  • Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102:257–275

    Article  CAS  Google Scholar 

  • Rowbotham AL, Levy LS, Shuker LK (2000) Chromium in the environment: an evaluation of exposure of the uk general population and possible adverse health effects. J Toxicol Environ Health Part B 3:145–178

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Akhatar N (2002) Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metalsfrom contaminated water. Bioresour Technol 81:151–153

    Article  Google Scholar 

  • Saka C, Sahin O, Demir H, Kahyaoglu M (2011) Removal of lead from aqueous solutions using preboiled and formaldehyde treated onion skins as a new adsorbent. Separ Sci Technol 46:507–517

    Article  CAS  Google Scholar 

  • Santos VCGD, Dragunski SDC, Tarley RT, Caetano J (2012) Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. J Quim Nova 35:1606–1611

    Article  Google Scholar 

  • Sarma D, Malliakas CD, Subrahmanyam KS, Islam SM, Kanatzidis MG (2016) K2xSn4xS8x(x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO2 2+ Ions. Chem Sci 7:1121

    Article  CAS  Google Scholar 

  • Setyono D, Valiyaveettil S (2014) Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustain Chem Eng 2:2722–2729

    Article  CAS  Google Scholar 

  • Shaalan H, Sorour M, Tewfik S (2001) Simulation and optimization of a membrane system for chromium recovery from tanning wastes. Desalination 14:315–324

    Article  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247

    Article  CAS  Google Scholar 

  • Suksabye P, Thiravetyan P (2012) Cr (VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J Environ Manag 102:1–8

    Article  CAS  Google Scholar 

  • Sun JM, Shang C, Huang JC (2003) Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater. Environ Sci Technol 37:4281–4287

    Article  CAS  Google Scholar 

  • Sun Z, Guo D, Zhang L, Li H, Yang B, Yan S (2015) Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg2+ ions. J Mater Chem B 3:3201–3210

    Article  CAS  Google Scholar 

  • Tan WT, Ooi ST, Lee CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibre. Environ Technol 14:277–282

    Article  CAS  Google Scholar 

  • Tan XL, Fang M, Wang XK (2008) Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photo catalytic reduction of Cr(VI) study. J Nanosci Nanotechnol 8:5624–5631

    Article  CAS  Google Scholar 

  • Tao X, Li K, Yan H, Yang H, Li A (2016) Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environ Pollut 209:21–29

    Article  CAS  Google Scholar 

  • Tasar S, Kaya F, Ozer A (2014) Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2:1018–1026

    Article  CAS  Google Scholar 

  • Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photo catalytic reduction of chromium (III) over TiO2 particles in the presence of oxalate: involvement of Cr(VI) species. Environ Sci Technol 38:1589–1594

    Article  CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr(VI) by Mucor hiemalis. J Biochem Eng 23:185–192

    Article  CAS  Google Scholar 

  • Vergili I, Kaya Y, Sen U, Gonder ZB, Aydiner C (2012) Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resour Conserv Recycl 58:25–35

    Article  Google Scholar 

  • Vijaya Y, Srinivasa RP, Veera MB, Krishnaiah A (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym 72:261–271

    Article  CAS  Google Scholar 

  • Wan S, Ma Z, Xue Y, Ma M, Xu S, Qian L, Zhang Q (2014) Sorption of lead (II), cadmium (II), and copper (II) ions from aqueous solutions using tea waste. Ind Eng Chem Res 53:3629–3635

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2010) Research advances in heavy metal removal by biosorption. Acta Sci Circumstantiae 30:673–701

    Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. J Chem Eng 156:11–24

    Article  CAS  Google Scholar 

  • Wang LK, Tay JH, Tay STL, Hung YT (2010) Environmental bioengineering, vol 11. Springer, Humana press, pp 1–807. ISBN 978-1-60327-031-1

    Book  Google Scholar 

  • Wang S, Wei M, Huang Y (2013) Biosorption of multifold toxic heavy metal ions from aqueous water onto food residue eggshell membrane functionalized with ammonium thioglycolate. J Agric Food Chem 61:4988–4996

    Article  CAS  Google Scholar 

  • Wang N, Xu X, Li H, Zhai J, Yuan L, Zhang K, Yu H (2016) Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb(II) from aqueous solutions. Ind Eng Chem Res 55:4960–4968

    Article  CAS  Google Scholar 

  • Xing M, Xu L, Wang J (2016) Mechanism of Co (II) adsorption by zero valent iron/graphene nanocomposite. J Hazard Mater 301:286–296

    Article  CAS  Google Scholar 

  • Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu JX, Chen TH (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium Cr(VI) from aqueous solutions. J Hazard Mat 166:821–829

    Article  CAS  Google Scholar 

  • Zagorodni AA (2007) Ion exchange materials properties and applications. First edition, vol 31. Elsevier, Amsterdam

    Google Scholar 

  • Zare EN, Lakouraj MM (2014) Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions. Iran Polym J 23:257–266

    Article  CAS  Google Scholar 

  • Zare EN, Lakouraj MM, Ramezani A (2016) Efficient sorption of Pb(II) from an aqueous solution using a poly (aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New J Chem 40:2521

    Article  CAS  Google Scholar 

  • Zare EN, Motahari A, Sillanpää M (2018a) Nanoadorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:73–195

    Article  CAS  Google Scholar 

  • Zare EN, Lakouraj MM, Masoumi M (2018b) Efficient removal of Pb(II) and Cd (II) from water by cross-linked poly (N-vinylpyrrolidone-co-maleic anhydride)@eggshell/Fe 3O4 environmentally friendly nano composite. Desalin Water Treat 106:209–219

    Article  CAS  Google Scholar 

  • Zarghami Z, Akbari A, Latifi AM, Amani MA (2016) Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metalsremoving and study of its adsorption kinetics and thermodynamics. Bioresour Technol 205:230–238

    Article  CAS  Google Scholar 

  • Zhang Y, Chi H, Zhang W, Sun Y, Liang Q, Gu Y (2014) Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano Micro Lett 6:80

    Article  Google Scholar 

  • Zhang H, Dang Q, Liu C, Cha D, Yu Z, Zhu W, Fan B (2017) Uptake of Pb(II) and Cd (II) on chitosan microsphere surface successively grafted by methyl acrylate and diethylenetriamine. ACS Appl Mater Interfaces 9:11144–11155

    Article  CAS  Google Scholar 

  • Zhao F, Repo E, Sillanpaa M, Meng Y, Yin D, Tang WZ (2015a) Green synthesis of magnetic EDTA- and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Ind Eng Chem Res 54:1271–1281

    Article  CAS  Google Scholar 

  • Zhao F, Repo E, Yin D, Meng Y, Jafari S, Sillanpa M (2015b) EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol 49:10570–10580

    Article  CAS  Google Scholar 

  • Zhu Y, Zheng Y, Wang W, Wang A (2015) Highly efficient adsorption of Hg(II) and Pb(II) onto chitosan-based granular adsorbent containing thiourea groups. J Water Process Eng 7:218–226

    Article  Google Scholar 

Download references

Acknowledgements

Authors, A. H. Pandith and G. N. Dar thank DST, GOI, for financial support vide reference number DST/TM/WTI/2K16/248 (G). A.B, L.A.M and T.M would like to thank Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance in the form of Junior Research Fellowships (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Hussain Pandith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, A., Malik, L.A., Ahad, S. et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17, 729–754 (2019). https://doi.org/10.1007/s10311-018-00828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-00828-y

Keywords

Navigation