Skip to main content
Log in

Detection and removal of heavy metal ions: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In aqueous systems, heavy metal ions, when present in excess than permissible limits, are dangerous for human beings and aquatic life. Heavy metals cannot be degraded. Rather, they accumulate in living organisms either directly or through the food chain. Inside the body, metal ions can be converted to more toxic forms or can directly interfere with metabolic processes. As a result of metal toxicity, various disorders and damage due to oxidative stress triggered by metal ions have been witnessed. Toxic effects of metallic pollution coupled with the need of pure water for the survival and sanitation have thus prompted researchers to take every possible step to uphold the quality of water. In this regard, various strategies have been developed for the detection and the removal of metal ions from aqueous systems. Here we review metal-free water and methodologies used for rapid detection at low levels. Also, the application of benign materials and methods for metal removal from aqueous systems is detailed. Electrochemical methods, especially stripping and cyclic voltammetry, are commonly used methods for detection, while adsorption and ion exchange methods are quite effective for removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Devi et al. (2018). Copyright 2018 Electrochemical Society

Fig. 5

Adapted from Xia et al. (2010)

Fig. 6

Reproduced from Pei et al. (2014). Copyright 2014 American Chemical Society

Fig. 7

Adapted with permission from Yao et al. (2014). Copyright 2014 American Chemical Society

Fig. 8

Adapted with permission from Lee et al. (2007). Copyright 2007 American Chemical Society

Fig. 9

Reproduced with permission from Díez-Gil et al. (2007)

Fig. 10

Adapted with permission from Ahad et al. (2016). Copyright 2016 Royal Society of Chemistry

Fig. 11

Adapted with permission from Bashir et al. (2016). Copyright 2016 American Chemical Society

Fig. 12

Reproduced with permission from Sanaeepur et al. (2015). Copyright 2015 Elsevier

Fig. 13

Reproduced with permission from He et al. (2018). Copyright 2018 Taylor & Francis

Fig. 14

Reproduced with permission from Ihsanullah et al. (2016). Copyright 2015 Elsevier

Fig. 15

Reproduced with permission from Hao et al. (2018). Copyright 2018 Springer

Fig. 16

Adapted with permission from Geckeler and Volchek (1996). Copyright 1996 American Chemical Society

Fig. 17

Reproduced with permission from Al-Qodah and Al-Shannag (2017). Copyright 2017 Taylor & Francis

Similar content being viewed by others

References

  • Abdulrazak S, Hussaini K, Sani HM (2017) Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Appl Water Sci 7:3151–3155

    CAS  Google Scholar 

  • Abo-Farha SA, Abdel-Aal AY, Ashourb IA, Garamon SE (2009) Removal of some heavy metal cations by synthetic resin purolite C100. J Hazard Mater 169:190–194

    CAS  Google Scholar 

  • Aglan RF, Saleh HM, Mohamed GG (2018) Potentiometric determination of mercury(II) ion in various real samples using novel modifed screen-printed electrode. Appl Water Sci 8:141–151

    Google Scholar 

  • Ahad S, Bashir A, Manzoor T, Pandith AH (2016) Exploring the ion exchange and separation capabilities of thermally stable acrylamide zirconium(IV) sulphosalicylate (AaZrSs) composite material. RSC Adv 6:35914–35927

    CAS  Google Scholar 

  • Akbal F, Camci S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalin 269:214–222

    CAS  Google Scholar 

  • Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fsh. Risk to human health. Environ Chem Lett 16:903–917

    CAS  Google Scholar 

  • Al-Malack MH, Al-Attas OG, Basaleh AA (2017) Competitive adsorption of Pb2+ and Cd2+ onto activated carbon produced from municipal organic solid waste. Desalin Water Treat 60:310–318

    CAS  Google Scholar 

  • Al-Othman ZA, Inamuddin, Naushad M (2011a) Determination of ion-exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV) molybdate composite cation-exchanger. Chem Eng J 166:639–645

    CAS  Google Scholar 

  • Al-Othman ZA, Naushad M, Inamuddin (2011b) Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem Eng J 172:369–375

    CAS  Google Scholar 

  • AL-Othman ZA, Ali R, Naushad M (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247

    CAS  Google Scholar 

  • Al-Othman ZA, Alam MM, Naushad M (2013) Heavy toxic metal ion exchange kinetics: validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate. J Ind Eng Chem 19:956–960

    CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA, Ahamad T, AL Othman ZA, Alsehri SM, AA AA (2017a) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436

    Google Scholar 

  • Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017b) Novel metal − organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9:36026–36037

    CAS  Google Scholar 

  • Al-Qodah Z, Al-Shannag M (2017) Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review. Sep Sci Technol 52:2649–2676

    CAS  Google Scholar 

  • Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167:482–488

    Google Scholar 

  • Anastopoulos I, Robalds A, Tran HN, Mitrogiannis D, Giannakoudakis DA, Hosseini-Bandegharaei A, Dotto GL (2018) Removal of heavy metals by leaves-derived biosorbents. Environ Chem Lett 5:4. https://doi.org/10.1007/s10311-018-00829-x

    Article  CAS  Google Scholar 

  • Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56:4209–4215

    CAS  Google Scholar 

  • Array G, Merkoci A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    Google Scholar 

  • Athanasiadis K, Helmreich B (2005) Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. Water Res 39:1527–1532

    CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  Google Scholar 

  • Badawy NA, El-Bayaa AA, Abdel-Aal AY, Garamon SE (2009) Chromatographic separations and recovery of lead ions from a synthetic binary mixtures of some heavy metal using cation exchange resin. J Hazard Mater 166:1266–1271

    CAS  Google Scholar 

  • Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun 2:193–194

    Google Scholar 

  • Bakker E, Pretsch E (2008) Nanoscale potentiometry. Trends Anal Chem 27:612

    CAS  Google Scholar 

  • Bansod BK, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455

    CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arabian J Chem 4:361–377

    CAS  Google Scholar 

  • Bashir A, Ahad S, Pandith AH (2016) Soft template assisted synthesis of zirconium resorcinol phosphate nanocomposite material for the uptake of heavy-metal ions. Ind Eng Chem Res 55:4820–4829

    CAS  Google Scholar 

  • Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2018) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett. https://doi.org/10.1007/s10311-018-00828-y

    Article  Google Scholar 

  • Beltran B, Leal LO, Ferrer L, Cerd V (2015) Determination of lead by atomic fluorescence spectrometry using an automated extraction/preconcentration flow system. J Anal At Spectrom 30:1072–1079

    CAS  Google Scholar 

  • Bernard E, Jimoh A, Odigure JO (2013) Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res J Chem Sci 3:3–9

    CAS  Google Scholar 

  • Cabrera-Vique C, Teissedre P, Cabanis M, Cabanis J (1997) Determination and levels of chromium in french wine and grapes by graphite furnace atomic absorption spectrometry. J Agric Food Chem 45:1808–1811

    CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A, Joshib GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    CAS  Google Scholar 

  • Celebi MS, Ozyörük H, Yildiz A, Abaci S (2009) Determination of Hg2+ on poly(vinylferrocenium) (PVF+)-modified platinum electrode. Talanta 78:405–409

    Google Scholar 

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Wat Sci Technol 39:135–138

    CAS  Google Scholar 

  • Chen J, Xiao S, Wu X, Fang K, Liu W (2005) Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 67:992–996

    CAS  Google Scholar 

  • Chen H, Qian GR, Ruan XX, Frost RL (2016) Removal process of nickel(II) by using dodecyl sulfate intercalated calcium aluminum layered double hydroxide. Appl Clay Sci 132:419–424

    Google Scholar 

  • Chiarle S, Ratto M, Rovatti M (2000) Mercury removal from water by ion exchange resins adsorption. Water Res 34:2971–2978

    CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    CAS  Google Scholar 

  • Crini G, Morin-Crini N, Fatin-Rouge Deon S, Fievet P (2017) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arabian J Chem 10:3826–3839

    Google Scholar 

  • Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    CAS  Google Scholar 

  • Cvetkovi J, Arpadjan S, Karadjova I, Stafilov T (2006) Determination of cadmium in wine by electrothermal atomic absorption spectrometry. Acta Pharm 56:69–77

    Google Scholar 

  • Czolk R, Reichert J, Ache HJ (1992) An optical sensor for the detection of heavy metal ions. Sens Actuators B 7:540–543

    CAS  Google Scholar 

  • de Greogi I, Quiroz W, Pinochet H, Pannier F, Potin-Gautier M (2007) Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: extraction procedures and stability of antimony species. Talanta 73:458–465

    Google Scholar 

  • Devi NR, Sasidharan M, Sundramoorthy AK (2018) Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J Electrochem Soc 165:3046–3053

    Google Scholar 

  • Díez-Gil C, Caballero A, Ratera I, Tárraga A, Molina P, Veciana J (2007) Naked-eye and selective detection of mercury (II) ions in mixed aqueous media using a cellulose-based support. Sensors 7:3481–3488

    Google Scholar 

  • Dong SF, Zhu ZG (2002) Determination of the contents of Ca, Mg, Fe, Cu and Zn in suxiao jiuxin pill and the analysis of Ca/Mg and Cu/Zn values. Guang Pu Xue Yu Guang Pu Fen Xi 22:478–479

    CAS  Google Scholar 

  • Dong SF, Zhu ZG (2003) Determination of the content of inorganic elements in taponin tablet recipe. Guang Pu Xue Yu Guang Pu Fen Xi 23:201–202

    CAS  Google Scholar 

  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxifcation of heavy metals during plant growth and metabolism. Environ Chem Lett 16:1169–1192

    CAS  Google Scholar 

  • Durmuşkahya C, Alp H, Hortooglu ZS, Toktas U, Kayalar H (2016) X-ray fluorescence spectroscopic determination of heavy metals and trace elements in aerial parts of Origanum sipyleum L from Turkey. Trop J Pharm Res 15:1013–1015

    Google Scholar 

  • Düzgün A, Zelada-Guillén GA, Crespo GA, Macho S, Riu J, Rius FX (2011) Nanostructured materials in potentiometry. Anal Bioanal Chem 399:171–181

    Google Scholar 

  • El-Bahi SM, Sroor AT, Arhoma NF, Darwish SM (2013) XRF analysis of heavy metals for surface soil of Qarun Lake and Wadi El Rayan in Faiyum, Egypt. Open J Metal 3:21–25

    Google Scholar 

  • Elfeky SA, Mahmoud SE, Youssef AF (2017) Applications of CTAB modified magnetic nanoparticles for removal of chromium(VI) from contaminated water. J Adv Res 8:435–443

    CAS  Google Scholar 

  • Elifantz H, Tel-Or E (2002) Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water Air Soil Pollut 141:207–218

    CAS  Google Scholar 

  • Ene A, Bosneaga A, Georgescu L (2010) Determination of heavy metals in soils using XRF technique. Romanian J Phys 55:815–820

    CAS  Google Scholar 

  • Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427

    CAS  Google Scholar 

  • Eshaq G, Rabie AM, Bakr AA, Mady AH, ElMetwally AE (2016) Cr(VI) adsorption from aqueous solutions onto Mg–Zn–Al LDH and its corresponding oxide. Desalin Water Treat 57:20377–20387

    CAS  Google Scholar 

  • Estela JM, Tomas C, Cladera A, Cerda V (1995) Potentiometric stripping analysis: a review. Crit Rev Anal Chem 25:91

    CAS  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206

    Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelationtherapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Fu Y, Li H, Hu W (2007) Small molecular chromogenic sensors for Hg2+: a strong, “push–pull” system exists after binding. Eur J Org Chem 2007:2459–2463

    Google Scholar 

  • Gadhave A, Waghmare J (2014) Removal of heavy metal ions from wastewater by carbon nanotubes (CNTs). Int J Chem Sci Appl 5:56–67

    Google Scholar 

  • Garba MD, Usman M, Mazumder MAJ, Al-Ahmed A, Inamuddin (2019) Complexing agents for metal removal using ultrafltration membranes: a review. Environ Chem Lett 5:4. https://doi.org/10.1007/s10311-019-00861-5

    Article  CAS  Google Scholar 

  • Garcia MA, Alonso J, Melgar MJ (2005) Agaricus macrospores as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biotechnol 80:325–330

    CAS  Google Scholar 

  • Geckeler KE, Volchek K (1996) Removal of hazardous substances from water using ultrafiltration in conjunction with soluble polymers. Environ Sci Technol 30:725–734

    CAS  Google Scholar 

  • Gemma F, Juan ML, Ana B, Jose DL (2006) Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. J Agric Food Chem 54:6106–6112

    Google Scholar 

  • Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y (2014a) A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: kinetics, equilibrium and thermodynamic studies. J Ind Eng Chem 20:454–461

    CAS  Google Scholar 

  • Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y (2014b) Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies. J Ind Eng Chem 20:2193–2199

    CAS  Google Scholar 

  • Gode F, Pehlivan E (2006) Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater 136:330–337

    CAS  Google Scholar 

  • Gong T, Liu J, Liu X, Liu J, Xiang J, Wu Y (2016) A sensitive and selective platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem 213:306–312

    CAS  Google Scholar 

  • Gumpu MB, Sethuramanb S, Krishnanb UM, Rayappana JBB (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuators B 213:515–533

    CAS  Google Scholar 

  • Gumpu MB, Krishnan UM, Rayappan JBB (2017) Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix-a permeability approach. Anal Bioanal Chem 409:4257–4266

    CAS  Google Scholar 

  • Hafuka A, Takitani A, Suzuki H, Iwabuchi T, Takahashi M, Okabe S, Satoh H (2017) Determination of cadmium in brown rice samples by fluorescence spectroscopy using a fluoroionophore after purification of cadmium by anion exchange resin. Sensors 17:2291–2300

    Google Scholar 

  • Hao P, Ma X, Xie J, Lei F, Li L, Zhu W, Cheng X, Cui G, Tang B (2018) Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Sci China Chem 61:797–805

    CAS  Google Scholar 

  • Harrington CF, Clough R, Drennan-Harris LR, Hill SJ, Tyson JF (2011) Atomic spectrometry update. Elemental speciation. J Anal At Spectrom 26:1561–1595

    CAS  Google Scholar 

  • He X, Qiu X, Hu C, Liu Y (2018) Treatment of heavy metal ions in wastewater using layered double hydroxides: a review. J Dispers Sci Technol 39:792–801

    CAS  Google Scholar 

  • Hisamoto H, Nakagawa E, Nagatsuka K, Abe Y, Sato S, Siswanta D, Suzuki K (1995) Silver ion selective optodes based on novel thia ether compounds. Anal Chem 67:1315–1321

    CAS  Google Scholar 

  • Hutton LA, ONeil GD, Read TL, Ayres Z, Newton ME, Macpherson JV (2014) Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude. Anal Chem 86:4566–4572

    CAS  Google Scholar 

  • Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    CAS  Google Scholar 

  • Inamuddin, Naushad M, Rangreeza TA, AL-Othman ZA (2015) Ion-selective potentiometric determination of Pb(II) ions using PVC-based carboxymethyl cellulose Sn(IV) phosphate composite membrane electrode. Desalin Water Treat 56:806–813

    CAS  Google Scholar 

  • Ingale SA, Seela F (2012) A ratiometric fluorescent on–off Zn2+ chemosensor based on a tripropargylamine pyrene azide click adduct. J Org Chem 77:9352–9356

    CAS  Google Scholar 

  • Inglezakis VJ, Stylianou MA, Gkantzou D, Loizidou MD (2007) Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210:248–256

    CAS  Google Scholar 

  • Innuphata C, Chootoa P (2017) Determination of trace levels of Cd(II) in tap water samples by anodic stripping voltammetry with an electrografted boron-doped diamond electrode. ScienceAsia 43:33–41

    Google Scholar 

  • Ismaiel AA, Aroua MK, Yusoff R (2012) Potentiometric determination of trace amounts of mercury(II) in water sample using a new modified palm shell activated carbon paste electrode based on kryptofix®5. Am J Anal Chem 3:859–865

    Google Scholar 

  • Javanbakht M, Divsar F, Badiei A, Ganjali MR, Norouzi P, Mohammadi ZG, Chaloosi M, Abdi JA (2009) Potentiometric detection of mercury(II) ions using a carbon paste electrode modified with substituted thiourea-functionalized highly ordered nanoporous silica. Anal Sci 25:789–794

    CAS  Google Scholar 

  • Jian-Qua L, Xi-We H, Xian-Shun Z, Hai-Li Z, Zheng-Zh Z (2003) Anodic stripping voltammetric determination of lead (II) using glassy carbon electrode modified with novel Calix[4] arene. Chin J Chem 21:687–692

    Google Scholar 

  • Jothimuthu P, Wilson RA, Herren J, Haynes EN, Heineman WR, Papautsky I (2011) Lab-on-a-chip sensor for detection of highly electronegative heavy metals by anodic stripping voltammetry. Biomed Micro 13:695–703

    Google Scholar 

  • Kadarkaraisamy M, Sykes AG (2006) Luminescence detection of transition and heavy metals by inversion of excited states: synthesis, spectroscopy, and X-ray crystallography of Ca, Mn, Pb, and Zn complexes of 1,8-anthraquinone-18-crown-5. Inorg Chem 45:779–786

    CAS  Google Scholar 

  • Kadarkaraisamy M, Sykes AG (2007) Selective luminescence detection of cadmium(II) and mercury(II) utilizing sulfur-containing anthraquinone macrocycles (part 2) and formation of an unusual Hg2 2+-crown ether dimer via reduction of Hg(II) by DMF. Polyhedron 26:1323–1330

    CAS  Google Scholar 

  • Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16:919–946

    CAS  Google Scholar 

  • Kanchana P, Sudhan N, Anandhakumar S, Mathiyarasu J, Manisankar P, Sekar C (2015) Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Adv 5:68587–68594

    CAS  Google Scholar 

  • Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr2+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56:141–147

    CAS  Google Scholar 

  • Kapolna E, Gerely V, Dernovics M, Illes A, Fodor P (2007) Fate of selenium species in sesame seeds during simulated bakery process. J Food Eng 79:494–501

    CAS  Google Scholar 

  • Karimi M, Aboufazeli F, Zhad HRLZ, Sadeghi O, Najafi E (2012) Determination of cadmium(II) ions in environmental samples: a potentiometric sensor. Curr World Environ 7:201–206

    CAS  Google Scholar 

  • Karnib M, Kabbani A, Holail H, Olama Z (2014) Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50:113–120

    CAS  Google Scholar 

  • Kempegowda RG, Malingappa P (2012) A binderless, covalently bulk modified electrochemical sensor: application to simultaneous determination of lead and cadmium at trace level. Anal Chim Acta 728:9–17

    Google Scholar 

  • Kojuncu Y, Bundalevska JM, Ay U, Cundeva K, Stafilov T, Akcin G (2004) Atomic absorption spectrometry determination of Cd, Cu, Fe, Ni, Pb, Zn, and Tl traces in seawater following flotation separation. Sep Sci Technol 39:2751–2765

    CAS  Google Scholar 

  • Kulshreshtha S (2018) Removal of pollutants using spent mushrooms substrates. Environ Chem Lett 5:5. https://doi.org/10.1007/s10311-018-00840-2

    Article  CAS  Google Scholar 

  • Lair GJ, Gerzabek MH, Haberhauer G (2007) Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett 5:23–27

    CAS  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  • Lebedev A, Sinikova N, Nikolaeva S, Poliakova O, Khrushcheva M, Pozdnyakov S (2003) Metals and organic pollutants in snow surrounding an iron factory. Environ Chem Lett 1:107–112

    CAS  Google Scholar 

  • Lee MH, Wu J, Lee JW, Jung JH, Kim JS (2007) Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org Lett 9:2501–2504

    CAS  Google Scholar 

  • Lee HJ, Lagger G, Pereirac CM, Silvac AF, Girault HH (2009) Amperometric tape ion sensors for cadmium(II) ion analysis. Talanta 78:66–70

    CAS  Google Scholar 

  • Lerchi M, Bakker E, Rusterholz B, Simon W (1992) Lead-selective bulk optodes based on neutral ionophores with subnanomolar detection limits. Anal Chem 64:1534–1540

    CAS  Google Scholar 

  • Lerchi M, Reitter E, Simon W, Pretsch E, Chowdhury DA, Kamata S (1994) Bulk optodes based on neutral dithiocarbamate ionophores with high selectivity and sensitivity for silver and mercury cations. Anal Chem 66:1713–1717

    CAS  Google Scholar 

  • Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609

    CAS  Google Scholar 

  • Li X, Zhou D, Xu J, Chen H (2007) In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly(dimethylsiloxane) microchip. Talanta 71:1130–1135

    CAS  Google Scholar 

  • Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43:3067–3075

    CAS  Google Scholar 

  • Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    CAS  Google Scholar 

  • Liu ZG, Chen X, Jia Y, Liu JH, Huang XJ (2014a) Role of Fe(III) in preventing humic interference during As(III) detection on gold electrode: spectroscopic and voltammetric evidence. J Hazard Mater 267:153–160

    CAS  Google Scholar 

  • Liu ZG, Chen X, Liu JH, Huang XJ (2014b) Robust electrochemical analysis of As(III) integrating with interference tests: a case study in groundwater. J Hazard Mater 278:66–74

    CAS  Google Scholar 

  • Logar M, Horvat M, Akagi H, Pihlar B (2002) Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters. Anal Bioanal Chem 374:1015–1021

    CAS  Google Scholar 

  • Losev VN, Buyko OV, Trofimchuk AK, Zuy ON (2015) Silica sequentially modified with polyhexamethylene guanidine and arsenazo I for preconcentration and ICPOES determination of metals in natural waters. Micro Chem J 123:84–89

    CAS  Google Scholar 

  • Luo L, Wang X, Ding Y, Li Q, Jia J, Deng D (2010) Voltammetric determination of Pb2+ and Cd2+ with montmorillonite-bismuth-carbon electrodes. Appl Clay Sci 50:154–157

    CAS  Google Scholar 

  • Lutfullah Rashid M, Rahman N (2012) Potentiometric sensor for the determination of lead(II) ion based on zirconium(IV) iodosulphosalicylate. Sci Adv Mater 4:1–6

    Google Scholar 

  • Ma L, Wang Q, Islam SM, Liu Y, Ma S, Kanatzidis MG (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS4 2− ion. J Am Chem Soc 138:2858–2866

    CAS  Google Scholar 

  • Ma L, IslamSM Liu H, Zhao J, Sun G, Li H, Ma S, Kanatzidis MG (2017) Selective and efficient removal of toxic oxoanions of As(III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS4 2−. Chem Mater 29:3274–3284

    CAS  Google Scholar 

  • Majid S, El-Rhazi M, Amine A, Brett CMA (2002) An amperometric method for the determination of trace mercury(II) by formation of complexes with l-tyrosine. Anal Chim Acta 464:123–133

    CAS  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2013) Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures. Environ Chem Lett 11:119–125

    CAS  Google Scholar 

  • Marguí E, Kregsamer P, Hidalgoc M, Tapias J, Queralt I, Streli C (2010) Analytical approaches for Hg determination in wastewater samples by means of total reflection X-ray fluorescence spectrometry. Talanta 82:821–827

    Google Scholar 

  • Marshall WE, Johns MM (1996) Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion. J Chem Technol Biotechnol 66:192–198

    CAS  Google Scholar 

  • Matlock MM, Henke KR, Atwood DA (2002a) Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J Hazard Mater 92:129–142

    CAS  Google Scholar 

  • Matlock MM, Howerton BS, Aelstyn MAV, Nordstrom FL, Atwood DA (2002b) Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru. Environ Sci Technol 36:1636–1639

    CAS  Google Scholar 

  • Maximous NN, Nakhla GF, Wan WK (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110

    Google Scholar 

  • Mazloum-ardakani M, Amini MK, Dehghan M, Kordi E, Sheikh-mohsen MA (2012) Nanomolar determination of Pb(II) ions using a selective templated electrode. J Serb Chem Soc 77:899–910

    CAS  Google Scholar 

  • Minami T, Atsumi K, Ueda J (2003) Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide. Anal Sci 19:313–315

    CAS  Google Scholar 

  • Mirbagheri SA, Hosseini SN (2005) Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination 171:85–93

    CAS  Google Scholar 

  • Mittal A, Naushad M, Sharma G, ALothman ZA, Wabaidur SM, Alam M (2016) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalin Water Treat 57(46):21863–21869

    CAS  Google Scholar 

  • Mohammadi H, Amine A, Cosnier S, Mousty C (2005) Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on atrienzymatic-clay matrix. Anal Chim Acta 543:143–149

    CAS  Google Scholar 

  • Moraes PM, Santos FA, Cavecci B, Padilha CC, Vieira JC, Roldan PS, Padilha PM (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617

    CAS  Google Scholar 

  • Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C, Kostić M, Cosentino C, Chanet G, Martel B, Lichtfouse E, Crini G (2019) Hemp-based adsorbents for sequestration of metals: a review. Environ Chem Lett 17:393–408

    CAS  Google Scholar 

  • Mosekiemang T, Dikinya O (2012) Efficiency of chelating agents in retaining sludge-borne heavy metals in intensively applied agricultural soils. Int J Environ Sci Technol 9:129–134

    CAS  Google Scholar 

  • Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92:42–48

    CAS  Google Scholar 

  • Mugheri AQ, Tahira A, Sirajuddin Sherazi STH, Abro MI, Willander M, Ibupoto ZH (2016) An amperometric indirect determination of heavy metal ions through inhibition of glucose oxidase immobilized on cobalt oxide nanostructures. Sens Lett 14:1–9

    Google Scholar 

  • Muniz-Naveiro O, Dominguez-Gonzalez R, Bermejo-Barrera A, Bermejo-Barrera P, Cocho JA, Fraga JM (2007) Selenium speciation in cow milk obtained after supplementation with different selenium forms to the cow feed using liquid chromatography coupled with hydride generation-atomic fluorescence spectrometry. Talanta 71:1587–1593

    CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359

    CAS  Google Scholar 

  • Nabi SA, Naushad M, Bushra R (2009) Synthesis and characterization of a new organic–inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2018) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Google Scholar 

  • Naushad M (2014) Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108

    CAS  Google Scholar 

  • Naushad M, AL-Othman ZA, Islam M (2013) Adsorption of cadmium ion using a new composite cationexchanger polyaniline Sn(IV) silicate: kinetics, thermodynamic and isotherm studies. Int J Environ Sci Technol 10:567–578

    CAS  Google Scholar 

  • Naushad M, Rangreez TA, Inamuddin (2014) Potentiometric determination of Cd(II) ions using PVC based polyaniline Sn(IV) silicate composite cationexchanger ion-selective membrane electrode. Desalin Water Treat 55:1–8

    Google Scholar 

  • Naushad M, AL-Othman ZA, Sharma G, Inamuddin (2015a) Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin. Ionics 21:1453–1459

    CAS  Google Scholar 

  • Naushad M, Vasudevan S, Sharma G, Kumar A, AL-Othman ZA (2015b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:21863–21869

    Google Scholar 

  • Naushad M, Mittal A, Rathore M, Gupta V (2015c) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin Water Treat 54:2883–2890

    CAS  Google Scholar 

  • Naushad M, Ahamad T, Sharma G, Al-Muhtaseb AH, Albadarin AB, Alam MM, AL-Othman ZA, Alshehri SM, Ghfar AA (2016) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316

    CAS  Google Scholar 

  • Naushad M, Ahamad T, Basheer Al-Maswari M, Alqadami AA, Alshehri SM (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360

    CAS  Google Scholar 

  • Nie LX, Jin HY, Wang GL, Tian JG, Lin RC (2008) Study of determination method for heavy metals and harmful elements residues in four traditional Chinese medicine injections. Zhongguo Zhong Yao Za Zhi 33:2764–2767

    CAS  Google Scholar 

  • Odonchimeg S, Oyun J, Javkhlantugs N (2016) Determination of plantinum in rocks by graphite furnace atomic absorption spectrometry after separation on sorbent. Int Res J Eng Technol 03:753–757

    Google Scholar 

  • Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Mikrochim Acta 126:177–192

    CAS  Google Scholar 

  • Ogunsuyi HO, Ipinmoroti KO, Amoo IA, Ajayi OO (2001) Adsorption of Cu(II) ions from aqueous solution on thiolated and activated cellulose adsorbents developed from agricultural wastes. J Technosci 5:75–83

    Google Scholar 

  • Ojemaye MO, Okoh OO, Okoh AI (2017) Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: progress and prospects. Mater Express 7:439–456

    CAS  Google Scholar 

  • Okieimen FE, Okundaye JN (1989) Removal of cadmium and copper ions from aqueous solutions with thiolated maize (Zea mays) cob meal. Biol Wastes 30:225–230

    CAS  Google Scholar 

  • Okieimen FE, Ogbeifun DE, Nwala GN, Kumsah CA (1985) Binding of cadmium, copper and lead ions by modified cellulosic materials. Bull Environ Contam Toxicol 34:866–870

    CAS  Google Scholar 

  • Oliveira V, Sarmiento AM, Gomez-Ariza JK, Nieto JM, Sanchez-Rodas D (2006) New preservation method for inorganic arsenic speciation in acid mine drainage samples. Talanta 69:1182–1189

    CAS  Google Scholar 

  • Othman AM (2006) Potentiometric determination of mercury(II) using a tribromomercurate–rhodamine B PVC membrane sensor. Int J Environ Anal Chem 86:367–379

    CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    CAS  Google Scholar 

  • Özverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632

    Google Scholar 

  • Palmer PT, Jacobs R, Baker PE, Ferguson K, Webber S (2009) Use of fieldportable XRF analyzers for rapid screening of toxic elements in FDA regulated products. J Agric Food Chem 57:2605–2613

    CAS  Google Scholar 

  • Pathania D, Sharma G, Naushad M, Kumar A (2014) Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce(IV) silicophosphate: photocatalytic and antimicrobial applications. J Ind Eng Chem 20:3596–3603

    CAS  Google Scholar 

  • Pei X, Kang W, Yue W, Bange A, Heineman WR, Papautsky I (2014) Disposable copper-based electrochemical sensor for anodic stripping voltammetry. Anal Chem 86:4893–4900

    CAS  Google Scholar 

  • Poikyo R, Permki P (2003) Acid dissolution methods for heavy metals determination in pine needles. Environ Chem Lett 1:191–195

    Google Scholar 

  • Pujol L, Evrard D, Serrano KG, Freyssinier M, Cizsak AR, Gros P (2014) Electrochemical sensors and devices for electrochemical assay in water: the French groups contribution. Front Chem Anal Chem 19:1–24

    Google Scholar 

  • Radu T, Diamond D (2009) Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J Hazard Mater 171:1168–1171

    CAS  Google Scholar 

  • Radulescu C, Dulama ID, Stihi C, Ionita I, Chilian A, Necula C, Chelarescu ED (2014) Determination of heavy metal levels in water and therapeutic mud by atomic absorption spectrometry. Romanian J Phys 59:1057–1066

    Google Scholar 

  • Rahman MM, Adil M, Yusof AM, Kamaruzzaman YB, Ansary RH (2014) Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells materials 7:3634–3650

    CAS  Google Scholar 

  • Rahmanian O, Amini S, Dinari M (2018) Preparation of zinc/iron layered double hydroxide intercalated by citrate anion for capturing lead(II) from aqueous solution. J Mol Liq 256:9–15

    CAS  Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53

    CAS  Google Scholar 

  • Ratner N, Mandler D (2015) Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Anal Chem 87:5148–5155

    CAS  Google Scholar 

  • Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57:13–21

    CAS  Google Scholar 

  • Ruiz-Chancho MJ, Sabe R, Lopez-Sanchez JF, Rubio R, Thomas P (2005) New approaches to the extraction of arsenic species from soils. Microchim Acta 151:241–248

    CAS  Google Scholar 

  • Saeed A, Iqbal M, Akhtar MW (2005) Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (Black gram husk). J Haz Mater 117:65–73

    CAS  Google Scholar 

  • Sahmoune MN (2018) Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ Chem Lett. https://doi.org/10.1007/s10311-018-00819-z

    Article  Google Scholar 

  • Sanaeepur H, Kargari A, Nasernejad B, Amooghin AE, Omidkhah M (2015) A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. J Taiwan Inst Chem Eng 60:403–413

    Google Scholar 

  • Sanchez-Rodas D, GomezAriza JL, Oliveira V (2006) Development of a rapid extraction procedure for speciation of arsenic in chicken meat. Anal Bioanal Chem 385:1172–1177

    CAS  Google Scholar 

  • Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9

    CAS  Google Scholar 

  • Schaeffer R, Soeroes C, Ipolyi I, Fodor P, Thomaidis NS (2005) Determination of arsenic species in seafood samples from the Aegean Sea by liquid chromatography–(photo-oxidation)–hydride generation–atomic fluorescence spectrometry. Anal Chim Acta 547:109–118

    CAS  Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Vet Med 56:537–546

    CAS  Google Scholar 

  • Shahat A, Awual MR, Khaleque MA, Alam MZ, Naushad M, Chowdhury AMS (2015) Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chem Eng J 273:286–295

    CAS  Google Scholar 

  • Shaidan NH, Eldemerdash U, Awad S (2012) Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique. J Taiwan Inst Chem Eng 43:40–45

    CAS  Google Scholar 

  • Shim HY, Lee KS, Lee DS, Jeon DS, Park MS, Shin JS, Lee YK, Goo JW, Kim SB, Chung DY (2014) Application of electrocoagulation and electrolysis on the precipitation of heavy metals and particulate solids in washwater from the soil washing. J Agric Chem Environ 3:130–138

    Google Scholar 

  • Shirkhanloo H, Mousavi HZ, Rouhollahi A (2011) Preconcentration and determination of heavy metals in water, sediment and biological samples. J Serb Chem Soc 76:1583–1595

    CAS  Google Scholar 

  • Shukla SR, Pai RS (2005) Removal of Pb(II) from solution using cellulose containing materials. J Chem Technol Biotechnol 80:176–183

    CAS  Google Scholar 

  • Silva DH, Costa DA, Takeuchi RM, Santos AL (2011) Fast and simultaneous determination of Pb2+ and Cu2+ in water samples using a solid paraffin-based carbon paste electrode chemically modified with 2-aminothiazole-silica-gel. J Braz Chem Soc 22:1727–1735

    CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of food stuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    CAS  Google Scholar 

  • Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for ultra trace determination of divalent metal ions and arsenic species using totalreflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87:3535–3542

    CAS  Google Scholar 

  • Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    CAS  Google Scholar 

  • Szłyk E, Czerniak-Szydłowska A (2004) Determination of cadmium, lead, and copper in margarines and butters by galvanostatic stripping chronopotentiometry. J Agric Food Chem 52:4064–4071

    Google Scholar 

  • Taha K (2017) Heavy elements analyses in the soil using X-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy. Int J Adv Sci Eng Technol 5:118–120

    Google Scholar 

  • Talat M, Tripathi P, Srivastava ON (2018) Highly sensitive electrochemical detection of mercury present in the beauty creams using graphene modified glassy carbon electrode. Innov Corros Mater Sci 8:24–31

    Google Scholar 

  • Tareen AK, Sultan IN, Parakulsuksatid P, Shafi M, Khan A, Khan MW, Hussain S (2014) Detection of heavy metals (Pb, Sb, Al, As) through atomic absorption spectroscopy from drinking water of District Pishin, Balochistan, Pakistan. Int J Curr Microbiol App Sci 3:299–308

    CAS  Google Scholar 

  • Tatay S, GavinÄa P, Coronado E, Palomares E (2006) Optical mercury sensing using a benzothiazolium hemicyanine dye. Org Lett 8:3857–3860

    CAS  Google Scholar 

  • Tautkus S, Steponeniene L, Kazlauskas R (2004) Determination of iron in natural and mineral waters by flame atomic absorption spectrometry. J Serb Chem Soc 69:393–402

    CAS  Google Scholar 

  • Tokcaer and Yetis (2006) Pb(II) biosorption using anaerobically digested sludge. J Hazard Mater 137:1674–1680

    Google Scholar 

  • Tran T, Leu H, Chiub K, Lin C (2017) Electrochemical treatment for wastewater contained heavy metal the removing of the COD and heavy metal ions. J Chin Chem Soc 64:493–502

    CAS  Google Scholar 

  • Tsade HK (2016) Atomic absorption spectroscopic determination of heavy metal concentrations in Kulufo River, Arbaminch, Gamo Gofa, Ethiopia. J Environ Anal Chem 3:2380–2391

    Google Scholar 

  • Un UT, Ocal SE (2015) Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int J Environ Sci Dev 6:425. https://doi.org/10.7763/ijesd.2015.v6.630

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Varghese AG, Paul SA, Latha MS (2018) Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett. https://doi.org/10.1007/s10311-018-00843-z

    Article  Google Scholar 

  • Vukovic GD, Marinkovic AD, Skapin SD, Ristic MD, Aleksic R, Peric-Grujic AA, Uskokovic PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865

    CAS  Google Scholar 

  • Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79:4427–4432

    CAS  Google Scholar 

  • Wang XH, Deng WY, Xie YY, Wang CY (2013) Selective removal of mercury ions using a chitosan-poly(vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chem Eng J 228:232–242

    CAS  Google Scholar 

  • Wang H, Wu ZK, Chen BB, He M, Hu B (2015) Chip-based array magnetic solid phase micro extraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells. Analyst 140:5619–5626

    CAS  Google Scholar 

  • Wierzbicki T, Pyrzynska K (2002) Determination of vanadium content in wine by GF AAS. Chem Anal 47:449–455

    CAS  Google Scholar 

  • Wolfbeis OS (2002) Fiber optic chemical sensors and biosensors. Anal Chem 74:2663–2678

    CAS  Google Scholar 

  • Xia F, Zhang X, Zhou C, Sun D, Dong Y, Liu Z (2010) Simultaneous determination of copper, lead, and cadmium at hexagonal mesoporous silica immobilized quercetin modified carbon paste electrode. J Autom Methods Manag Chem. https://doi.org/10.1155/2010/824197

    Article  Google Scholar 

  • Xu RX, Yu XY, Gao C, Liu JH, Compton RG, Huang XJ (2013) Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg-Al-layered double hydroxides to detect Cd(II). Analyst 138:1812–1818

    CAS  Google Scholar 

  • Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multiwalled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109–116

    CAS  Google Scholar 

  • Yanming S, Dongbin L, Shifeng L, Lihui F, Shuai C, Haque MA (2017) Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide. Arabian J Chem 10:2295–2301

    Google Scholar 

  • Yao X, Guo Z, Yuan Q, Liu Z, Liu J, Huang X (2014) Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting. ACS Appl Mater Interfaces 6:12203–12213

    CAS  Google Scholar 

  • Yuan S, Chen W, Hu S (2004) Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode. Talanta 64:922–928

    CAS  Google Scholar 

  • Yuan X, Koh HL, Chui WK (2009) The analysis of heavy metals in Chinese herbal medicine by flow injection–mercury hydride system and graphite furnace atomic absorption spectrometry. Phytochem Anal 20:293–297

    CAS  Google Scholar 

  • Yuan-Zhen P, Yong-Ming H, Dong-Xing Y, Yan L, Zhen-Bin G (2012) Rapid analysis of heavy metals in coastal seawater using preconcentration with precipitation/co-precipitation on membrane and detection with X-ray fluorescence. Chin J Anal Chem 40:877–882

    Google Scholar 

  • Zarazúa G, Girón-Romero K, Tejeda S, León CC, Avila-Pérez P (2014) Total reflection X-ray fluorescence analysis of toxic metals in fish tissues. Am J Anal Chem 5:805–811

    Google Scholar 

  • Zewail TM, Yousef NS (2015) Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex Eng J 54:83–90

    Google Scholar 

  • Zhang QX, Wen H, Peng D, Fu Q, Huang XJ (2015) Interesting interference evidences of electrochemical detection of Zn(II), Cd(II) and Pb(II) on three different morphologies of MnO2 nanocrystals. J Electroanal Chem 739:89–96

    CAS  Google Scholar 

  • Zhao G, Wang H, Liu G (2017) Direct quantification of Cd2+ in the presence of Cu2+ by a combination of anodic stripping voltammetry using a bi-film-modified glassy carbon electrode and an artificial neural network. Sensors 17:1558–1572

    Google Scholar 

  • Zhong W, Ren T, Zhao L (2016) Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J Food Drug Anal 24:46–55

    CAS  Google Scholar 

  • Zhu YH, Hu J, Wang JL (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221:155–161

    Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    CAS  Google Scholar 

  • Zhu K, Gao Y, Tan X, Chen C (2016) Polyaniline-modified Mg/Al Layered Double Hydroxide composites and their application in efficient removal of Cr(VI). ACS Sustain Chem Eng 4:4361–4369

    CAS  Google Scholar 

  • Zhu J, Fu Q, Qiu G, Liu Y, Hu H, Huang Q, Violante A (2019) Influence of low molecular weight anionic ligands on the sorption of heavy metals by soil constituents: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00881-1

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Head of the department for providing timely encouragement and other valuable suggestions. Also LAM and AB would like to thank CSIR, New Delhi, for their financial help in the form of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Hussain Pandith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, L.A., Bashir, A., Qureashi, A. et al. Detection and removal of heavy metal ions: a review. Environ Chem Lett 17, 1495–1521 (2019). https://doi.org/10.1007/s10311-019-00891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-019-00891-z

Keywords

Navigation