Skip to main content
Log in

Flagellin glycosylation is ubiquitous in a broad range of phytopathogenic bacteria

  • Bacterial and Phytoplasma Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Glycosylation of flagellin is known to be involved in filament stabilization, motility, and virulence in Pseudomonas syringae. Here we investigated flagellin glycosylation in other phytopathogenic bacteria. Analyses of deduced amino acid sequences, glycostaining, and molecular masses of purified flagellins revealed that flagellins from all phytopathogenic bacteria investigated were glycosylated. Furthermore, the flagellin in a glycosylation-defective mutant of Xanthomonas campestris pv. campestris (Xcc) had a reduced molecular mass, and motility and virulence of the mutant toward host leaves decreased. These results suggest that flagellin glycosylation is ubiquitous in most phytopathogenic bacteria and that flagellin glycosylation is required for virulence in Xcc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arora SK, Bangera M, Lory S, Ramphal R (2001) A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci USA 98:9342–9347

    Article  PubMed  CAS  Google Scholar 

  • Arora SK, Neely AN, Blair B, Lory S, Ramphal R (2005) Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 73:4395–4398

    Article  PubMed  CAS  Google Scholar 

  • da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    Article  PubMed  Google Scholar 

  • De Maayer P, Chan WY, Venter SN, Toth IK, Birch PR, Joubert F, Coutinho TA (2010) Genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol 192:2936–2937

    Article  PubMed  Google Scholar 

  • Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G, Bohin JP, Van Gijsegem F et al (2011) Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol 193:2076–2077

    Article  PubMed  CAS  Google Scholar 

  • Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Takai R, Iwano M, Nakai M, Kondo M, Takayama S, Isogai A, Che FS (2011) Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. J Biol Chem 286:25519–25530

    Article  PubMed  CAS  Google Scholar 

  • Hitchen PG, Twigger K, Valiente E, Langdon RH, Wren BW, Dell A (2010) Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 38:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Hossain MM, Shibata S, Aizawa S, Tsuyumu S (2005) Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66:134–143

    Article  CAS  Google Scholar 

  • Ichinose Y, Taguchi F, Nguyen LC, Naito K, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T (2011) Glycosylation of bacterial flagellins and its role in motility and virulence. In: Wolpert T, Shiraishi T, Collmer A, Akimitsu K, Glazebrook J (eds) Genome-enabled analysis of plant–pathogen interactions. APS Press, St. Paul, pp 215–224

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyrocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I (2009) Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 191:3758–3759

    Article  PubMed  CAS  Google Scholar 

  • Logan SM (2006) Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:1249–1262

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LC, Yamamoto M, Ohnishi-Kameyama M, Andi S, Taguchi F, Iwaki M, Yoshida M, Ishii T, Konishi T, Tsunemi K, Ichinose Y (2009) Genetic analysis of the genes involved in the synthesis of modified 4-amino-4,6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci. Mol Genet Genomics 282:595–605

    Article  PubMed  CAS  Google Scholar 

  • Power PM, Jennings MP (2003) The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Taguchi F, Ichinose Y (2013) Virulence factor regulator (Vfr) controls virulence-associated phenotypes in Pseudomonas syringae pv. tabaci 6605 by a quorum sensing-independent mechanism. Mol Plant Pathol 14:279–292

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44:342–349

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shibata S, Suzuki T, Ogawa Y, Aizawa S, Takeuchi K, Ichinose Y (2008) Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. J Bacteriol 190:764–768

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Suzuki T, Takeuchi K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2009) Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiol Mol Plant Pathol 74:11–17

    Article  CAS  Google Scholar 

  • Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72–80

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Ono H, Yoshida M, Ishii T, Katoh E, Taguchi F, Miki R, Murata K, Kaku H, Ichinose Y (2007) Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in d and l configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189:6945–6956

    Article  PubMed  CAS  Google Scholar 

  • Wilson K (2001) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

    Google Scholar 

  • Yamamoto M, Ohnishi-Kameyama M, Nguyen CL, Taguchi F, Chiku K, Ishii T, Ono H, Yoshida M, Ichinose Y (2011) Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry. Genes 2:788–803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Emeritus Prof. S. Tsuyumu, Shizuoka University, Prof. Y. Hikichi, Kochi University, and NIAS Genebank for providing Pectobacterium carotovorum subsp. carotovorum EC1, Burkholderia glumae Pg-10 and Pseudomonas cichorii KN52, and all other bacteria investigated in this study. This work was supported in part by Technology of Japan and the Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ichinose.

Additional information

The nucleotide sequences of the fliC and fgt genes have been deposited in the DDBJ, EMBL, and GenBank nucleotide sequence databases under accession numbers AB775209 to AB775214.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichinose, Y., Taguchi, F., Yamamoto, M. et al. Flagellin glycosylation is ubiquitous in a broad range of phytopathogenic bacteria. J Gen Plant Pathol 79, 359–365 (2013). https://doi.org/10.1007/s10327-013-0464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-013-0464-4

Keywords

Navigation