Skip to main content
Log in

Regulation of 3β-HSD activity in the songbird brain

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Birds show high levels of steroid synthesis in the brain. Steroid biosynthesis in the brain can provide a mechanism for local and rapid changes in steroid levels in particular brain regions. Neural steroidogenic enzymes are regulated on both short and long timescales by both endogenous and environmental factors. Here, we discuss the regulation of one steroidogenic enzyme, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), which activates the prohormone dehydroepiandrosterone by converting it to a potent and aromatizable androgen, androstenedione. First, brain 3β-HSD mRNA and activity are regulated by developmental stage in nestling Zebra Finches (Taeniopygia guttata). Second, in vitro estradiol rapidly (<10 min) inhibits Zebra Finch brain 3β-HSD activity. Third, restraint stress rapidly (<15 min) regulates brain 3β-HSD activity in adult Zebra Finches and Song Sparrows (Melospiza melodia). Fourth, brain 3β-HSD activity is upregulated during the non-breeding season in wild male Song Sparrows. Fifth, during the non-breeding season, brain 3β-HSD activity is rapidly (<30 min) elevated by territorial encounters in a region-specific manner in male Song Sparrows. Taken together, these studies suggest that brain 3β-HSD is a key factor in the control of avian neurophysiology and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton

    Google Scholar 

  • Ball GF, Bernard DJ, Foidart A, Lakaye B, Balthazart J (1999) Steroid sensitive sites in the avian brain: does the distribution of the estrogen receptor alpha and beta types provide insight into their function? Brain Behav Evol 54(1):28–40

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Baillien M, Ball GF (2006a) Rapid control of brain aromatase activity by glutamatergic inputs. Endocrinology 147(1):359–366

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Cornil CA, Taziaux M, Charlier TD, Baillien M, Ball GF (2006b) Rapid changes in production and behavioral action of estrogens. Neuroscience 138(3):783–791

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37(3):395–403

    Article  PubMed  CAS  Google Scholar 

  • Black M, Balthazart J, Baillien M, Grober MS (2011) Rapid increase in aggressive behavior precedes the decrease in brain aromatase activity during socially mediated sex change in Lythrypnus dalli. Gen Comp Endocr 170(1):119–124

    Article  PubMed  CAS  Google Scholar 

  • Breuner CW, Hahn TP (2003) Integrating stress physiology, environmental change, and behavior in free-living sparrows. Horm Behav 43(1):115–123

    Article  PubMed  Google Scholar 

  • Caldwell GS, Glickman SE, Smith ER (1984) Seasonal aggression independent of seasonal testosterone in wood rats. Proc Natl Acad Sci USA 81(16):5255–5257

    Article  PubMed  CAS  Google Scholar 

  • Chapman JC, Polanco JR, Min S, Michael SD (2005) Mitochondrial 3 β-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: an hypothesis. Repro Biol Endocrinol 3:11

    Article  Google Scholar 

  • Charlier TD, Cornil CA, Ball GF, Balthazart J (2010) Diversity of mechanisms involved in aromatase regulation and estrogen action in the brain. Biochim Biophys Acta 1800(10):1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Cheng MF (1983) Behavioural “self-feedback” control of endocrine states. In: Balthazart J, Prove E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin, pp 408–421

    Chapter  Google Scholar 

  • Chin EH, Shah AH, Schmidt KL, Sheldon LD, Love OP, Soma KK (2008) Sex differences in DHEA and estradiol during development in a wild songbird: jugular versus brachial plasma. Horm Behav 54:194–202

    Article  PubMed  CAS  Google Scholar 

  • Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Dejace C, Ball GF, Balthazart J (2005) Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior. Endocrinology 146(9):3809–3820

    Article  PubMed  CAS  Google Scholar 

  • Cornil CA, Ball GF, Balthazart J (2006) Functional significance of the rapid regulation of brain estrogen action: where do the estrogens come from? Brain Res 1126:2–26

    Article  PubMed  CAS  Google Scholar 

  • Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 78(8):4704–4707

    Article  PubMed  Google Scholar 

  • Demas GE, Cooper MA, Albers HE, Soma KK (2007) Novel Mechanisms underlying neuroendocrine regulation of aggression: a synthesis of rodent, avian, and primate studies. In: Blaustein JD (ed) Neurochemistry and neuroendocrinology, vol 21. Handbook of neurochemistry and molecular biology. Springer, New York, pp 337–372

  • Dickens MJ, Charlier T, Cornil C, Ball G, Balthazart J (2011) Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail. Endocrinology 152(11):4242–4251

    Google Scholar 

  • Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon M-C, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30(3):259–301

    Article  PubMed  CAS  Google Scholar 

  • Filardo EJ, Thomas P (2005) GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends Endocrinol Metab 16(8):362–367

    Article  PubMed  CAS  Google Scholar 

  • Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29(2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Gill SA, Costa LM, Hau M (2008) Males of a single-brooded tropical bird species do not show increases in testosterone during social challenges. Horm Behav 54(1):115–124

    Article  PubMed  CAS  Google Scholar 

  • Godwin J, Crews D, Warner RR (1996) Behavioural sex change in the absence of gonads in a coral reef fish. Proc R Soc Lond B 263(1377):1683–1688

    Article  CAS  Google Scholar 

  • Goodson JL, Saldanha CJ, Hahn TP, Soma KK (2005) Recent advances in behavioral neuroendocrinology: insights from studies on birds. Horm Behav 48(4):461–473

    Article  PubMed  CAS  Google Scholar 

  • Gower DB, Cooke GM (1983) Regulation of steroid-transforming enzymes by endogenous steroids. J Steroid Biochem 19(4):1527–1556

    Article  PubMed  CAS  Google Scholar 

  • Hall PF, Sozer CC, Eik-Nes KB (1964) Formation of dehydroepiandrosterone during in vivo and in vitro biosynthesis of testosterone by testicular tissue. Endocrinology 74:35–43

    Article  PubMed  CAS  Google Scholar 

  • Hau M, Stoddard S, Soma K (2004) Territorial aggression and hormones during the non-breeding season in a tropical bird. Horm Behav 45(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Holloway CC, Clayton DF (2001) Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nat Neurosci 4(2):170–175

    Article  PubMed  CAS  Google Scholar 

  • Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE (1987) Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 84(23):8215–8219

    Article  PubMed  CAS  Google Scholar 

  • Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W (1994) Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol Cell Biochem 131(2):99–104

    Article  PubMed  CAS  Google Scholar 

  • Labrie F, Belanger A, Simard J, LuuThe V, Labrie C (1995) DHEA and peripheral androgen and estrogen formation: Intracrinology. Ann N Y Acad Sci 774:16–28

    Article  PubMed  CAS  Google Scholar 

  • London SE, Schlinger BA (2007) Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain. J Comp Neurol 502(4):507–521

    Article  PubMed  CAS  Google Scholar 

  • London SE, Monks DA, Wade J, Schlinger BA (2006) Widespread capacity for steroid synthesis in the avian brain and song system. Endocrinology 147(12):5975–5987

    Article  PubMed  CAS  Google Scholar 

  • London SE, Remage-Healey L, Schlinger BA (2009) Neurosteroid production in the songbird brain: a re-evaluation of core principles. Front Neuroendocrinol 30(3):302–314

    Article  PubMed  CAS  Google Scholar 

  • Makin HJK (1984) Biochemistry of steroid hormones, vol 2. Blackwell, Oxford

    Google Scholar 

  • Marler P, Peters S, Wingfield J (1987) Correlations between song acquisition, song production, and plasma levels of testosterone and estradiol in sparrows. J Neurobiol 18(6):531–548

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga M, Ukena K, Tsutsui K (2002) Androgen biosynthesis in the quail brain. Brain Res 948(1–2):180–185

    Article  PubMed  CAS  Google Scholar 

  • Migues PV, Johnston AN, Rose SP (2002) Dehydroepiandosterone and its sulphate enhance memory retention in day-old chicks. Neuroscience 109(2):243–251

    Article  PubMed  CAS  Google Scholar 

  • Mirzatoni A, Spence RD, Naranjo KC, Saldanha CJ, Schlinger BA (2010) Injury-induced regulation of steroidogenic gene expression in the cerebellum. J Neurotrauma 27(10):1875–1882

    Article  PubMed  Google Scholar 

  • Mo Q, Lu SF, Hu S, Simon NG (2004) DHEA and DHEA sulfate differentially regulate neural androgen receptor and its transcriptional activity. Brain Res Mol Brain Res 126(2):165–172

    Article  PubMed  CAS  Google Scholar 

  • Newman AEM, Soma KK (2009) Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress. Eur J Neurosci 29(9):1905–1914

    Article  PubMed  Google Scholar 

  • Newman AEM, Soma KK (2011) Aggressive interactions differentially modulate local and systemic levels of corticosterone and DHEA in a wild songbird. Horm Behav 60(4):389–396

    Article  PubMed  CAS  Google Scholar 

  • Newman AEM, Pradhan DS, Soma KK (2008) Dehydroepiandrosterone and corticosterone are regulated by season and acute stress in a wild songbird: jugular versus brachial plasma. Endocrinology 149(5):2537–2545

    Article  PubMed  CAS  Google Scholar 

  • Newman AEM, MacDougall-Shackleton SA, An YS, Kriengwatana B, Soma KK (2010) Corticosterone and dehydroepiandrosterone have opposing effects on adult neuroplasticity in the avian song control system. J Comp Neurol 518(18):3662–3678

    Article  PubMed  CAS  Google Scholar 

  • Odell WD, Parker LN (1984) Control of adrenal androgen production. Endocr Res 10(3–4):617–630

    Article  PubMed  CAS  Google Scholar 

  • Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6):947–970

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Li S, Luu-The V, Tremblay Y, Bélanger A, Labrie F (2001) Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3β-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J Endocrinol 171(2):373–383

    Article  PubMed  CAS  Google Scholar 

  • Pradhan DS, Yu Y, Soma KK (2008) Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain. J Neurochem 104(1):244–253

    PubMed  CAS  Google Scholar 

  • Pradhan DS, Lau LYM, Schmidt KL, Soma KK (2010a) 3β-HSD in songbird brain: subcellular localization and rapid regulation by estradiol. J Neurochem 115:667–675

    Article  PubMed  CAS  Google Scholar 

  • Pradhan DS, Newman AEM, Wacker DW, Wingfield JC, Schlinger BA, Soma KK (2010b) Aggressive interactions rapidly increase androgen synthesis in the brain during the non-breeding season. Horm Behav 57(4–5):381–389

    Article  PubMed  CAS  Google Scholar 

  • Remage-Healey L, Maidment NT, Schlinger BA (2008) Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci 11(11):1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Remage-Healey L, London SE, Schinger BA (2010) Birdsong and the neural production of steroids. J Chem Neuroanat 39(2):72–81

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Ukena K, Tsutsui K (2001) Activity and localization of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase in the zebrafish central nervous system. J Comp Neurol 439(3):291–305

    Article  PubMed  CAS  Google Scholar 

  • Schlinger BA, London SE (2006) Neurosteroids and the songbird model system. J Exp Zool A Comp Exp Biol 305(9):743–748

    PubMed  Google Scholar 

  • Schlinger BA, Soma KK, London SE (2001) Neurosteroids and brain sexual differentiation. Trends Neurosci 24(8):429–431

    Article  PubMed  CAS  Google Scholar 

  • Schlinger BA, Pradhan DS, Soma KK (2008) 3β-HSD activates DHEA in the songbird brain. Neurochem Intl 52(4–5):611–620

    Article  CAS  Google Scholar 

  • Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK (2008) Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen Comp Endocrinol 157(3):266–274

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KL, Chin EH, Shah AH, Soma KK (2009) Cortisol and corticosterone in immune organs and brain of European starlings: developmental changes, effects of restraint stress, comparison with zebra finches. Am J Physiol Reg Int Comp Physiol 297:R42–R51

    Article  CAS  Google Scholar 

  • Soma KK (2006) Testosterone and aggression: berthold, birds and beyond. J Neuroendocrinol 18(7):543–551

    Article  PubMed  CAS  Google Scholar 

  • Soma K, Wingfield J (1999) Endocrinology of aggression in the nonbreeding season. In: Adams NJ, Slotow R (eds) Proc Int Ornithol Congr 22:1606–1620

  • Soma KK, Wingfield JC (2001) Dehydroepiandrosterone in songbird plasma: seasonal regulation and relationship to territorial aggression. Gen Comp Endocrinol 123(2):144–155

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Hartman VN, Wingfield JC, Brenowitz EA (1999) Seasonal changes in androgen receptor immunoreactivity in the song nucleus HVc of a wild bird. J Comp Neurol 409(2):224–236

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Tramontin AD, Wingfield JC (2000) Oestrogen regulates male aggression in the non-breeding season. Proc R Soc Lond B 267(1448):1089–1096

    Article  CAS  Google Scholar 

  • Soma KK, Wissman AM, Brenowitz EA, Wingfield JC (2002) Dehydroepiandrosterone (DHEA) increases territorial song and the size of an associated brain region in a male songbird. Horm Behav 41(2):203–212

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Schlinger BA, Wingfield JC, Saldanha CJ (2003) Brain aromatase, 5α-reductase, and 5β-reductase change seasonally in wild male song sparrows: relationship to aggressive and sexual behavior. J Neurobiol 56(3):209–221

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Alday NA, Hau M, Schlinger BA (2004) Dehydroepiandrosterone metabolism by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase in adult zebra finch brain: sex difference and rapid effect of stress. Endocrinology 145(4):1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Scotti M-AL, Newman AEM, Charlier TD, Demas GE (2008) Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrinol 29(4):476–489

    Article  PubMed  CAS  Google Scholar 

  • Spinney LH, Bentley GE, Hau M (2006) Endocrine correlates of alternative phenotypes in the white-throated sparrow (Zonotrichia albicollis). Horm Behav 50(5):762–771

    Article  PubMed  CAS  Google Scholar 

  • Tam H, Schlinger BA (2007) Activities of 3β-HSD and aromatase in slices of developing and adult zebra finch brain. Gen Comp Endocrinol 150(1):26–33

    Article  PubMed  CAS  Google Scholar 

  • Taves MD, Schmidt KL, Ruhr IM, Kapusta K, Prior NH, Soma KK (2010) Steroid concentrations in plasma, whole blood and brain: effects of saline perfusion to remove blood contamination from brain. PLoS ONE 5(12):e15727

    Article  PubMed  CAS  Google Scholar 

  • Taves MD, Gomez-Sanchez CE, Soma KK (2011a) Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 301:E11–E24

    Article  PubMed  CAS  Google Scholar 

  • Taves MD, Ma C, Helmovics SA, Saldanha CJ, Soma KK (2011b) Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol 2:1–10

    Google Scholar 

  • Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M, Connolly ES Jr, Nethrapalli IS, Tinnikov A (2002) ER-X: a novel, plasma membrane associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J Neurosci 22(19):8391–8401

    PubMed  CAS  Google Scholar 

  • Tramontin AD, Wingfield JC, Brenowitz EA (2003) Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J Neurobiol 57:130–140

    Google Scholar 

  • Tremere LA, Pinaud R (2011) Brain-generated estradiol drives long-term optimization of auditory coding to enhance the discrimination of communication signals. J Neurosci 31(9):3271–3289

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Yamazaki T (1995) Avian neurosteroids. I. Pregnenolone biosynthesis in the quail brain. Brain Res 678(1–2):1–9

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Matsunaga M, Miyabara H, Ukena K (2006) Neurosteroid biosynthesis in the quail brain: a review. J Exp Zool A Comp Exp Biol 305(9):733–742

    PubMed  Google Scholar 

  • Vanson A, Arnold AP, Schlinger BA (1996) 3β-hydroxysteroid dehydrogenase/isomerase and aromatase activity in primary cultures of developing zebra finch telencephalon: dehydroepiandrosterone as substrate for synthesis of androstenedione and estrogens. Gen Comp Endocrinol 102(3):342–350

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29(2):238–257

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Wingfield JC, Gorbman A (1976) Correlation between blood level of androgens and sexual behavior in male leopard frogs, Rana pipiens. Gen Comp Endocrinol 29(1):72–77

    Article  PubMed  CAS  Google Scholar 

  • Widstrom RL, Dillon JS (2004) Is there a receptor for dehydroepiandrosterone or dehydroepiandrosterone sulfate? Sem Rep Med 22(4):289–298

    Article  CAS  Google Scholar 

  • Wingfield JC (1984) Environmental and endocrine control of reproduction in the song sparrow, Melospiza melodia. II. Agonistic interactions as environmental information stimulating secretion of testosterone. Gen Comp Endocrinol 56(3):417–424

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC (1994) Control of territorial aggression in a changing environment. Psychoneuroendocrinology 19(5–7):709–721

    Article  PubMed  CAS  Google Scholar 

  • Wingfield J, Hahn T (1994) Testosterone and territorial behavior in sedentary and migratory sparrows. Anim Behav 47(1):77–89

    Article  Google Scholar 

  • Wingfield J, Soma K (2002) Spring and autumn territoriality in song sparrows: same behavior, different mechanisms? Integr Comp Biol 42(1):11–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jacques Balthazart and Greg Ball for the invitation to speak at the 2010 International Ornithological Congress. We also thank Kim Schmidt for comments on the manuscript. Finally, we thank two anonymous reviewers for their helpful comments on the manuscript. The work described in this review was supported by grants from the Michael Smith Foundation for Health Research and the Canadian Institutes of Health Research to K.K.S. and by NSERC PGS D3 and Brains & Behavior (Georgia State University) fellowships to D.S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaleena S. Pradhan.

Additional information

Communicated by Scott V. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D.S., Soma, K.K. Regulation of 3β-HSD activity in the songbird brain. J Ornithol 153 (Suppl 1), 227–234 (2012). https://doi.org/10.1007/s10336-011-0808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0808-9

Keywords

Navigation