Skip to main content
Log in

Simultaneous Determination of Uric Acid, Xanthine and Hypoxanthine in Human Plasma and Serum by HPLC–UV: Uric Acid Metabolism Tracking

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple reversed phase HPLC method with UV detection in isocratic conditions was developed and validated for the simultaneous determination of hypoxanthine, xanthine and uric acid levels in human plasma and serum. One analysis run takes 6.5 min including a short organic mobile phase gradient for column regeneration. Concentrations of uric acid, xanthine and hypoxanthine in plasma and serum samples were highly comparable. However, hypoxanthine levels were increased in serum compared to plasma samples due to a prolonged time between serum and blood elements separation. The method was validated for linearity, precision, accuracy, sensitivity and robustness in a similar manner to that for pharmacokinetic data and it is appropriate for physiological and pathophysiological levels of all analytes. The stability of stock standard solutions was verified using spectrophotometric analysis in different conditions. The method is simple and robust with a good precision for the measurement of hypoxanthine, xanthine and uric acid in human plasma and serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morgan EJ, Stewart CP, Hopkins FG (1922) Proc R Soc Lond B Biol Sci 94:109–131

    Article  CAS  Google Scholar 

  2. Harris CM, Massey V (1997) J Biol Chem 272:28335–28341

    Article  CAS  Google Scholar 

  3. Battelli MG, Bolognesi A, Polito L (2014) Biochim Biophys Acta 1842:1502–1517. doi:10.1016/j.bbadis.2014.05.022

    Article  CAS  Google Scholar 

  4. Bobulescu IA, Moe OW (2012) Adv Chronic Kidney Dis 19:358–371. doi:10.1053/j.ackd.2012.07.009

    Article  Google Scholar 

  5. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Proc Natl Acad Sci USA 78:6858–6862

    Article  CAS  Google Scholar 

  6. Hayden MR, Tyagi SC (2004) Nutr Metab (Lond) 1:10. doi:10.1186/1743-7075-1-10

    Article  Google Scholar 

  7. Lytvyn Y, Perkins BA, Cherney DZ (2015) Can J Diabetes 39:239–246. doi:10.1016/j.jcjd.2014.10.013

    Article  Google Scholar 

  8. Zhao Y, Yang X, Lu W, Liao H, Liao F (2009) Microchim Acta 164:1–6. doi:10.1007/s00604-008-0044-z

    Article  CAS  Google Scholar 

  9. Tiffany TO, Jansen JM, Burtis CA, Overton JB, Scott CD (1972) Clin Chem 18:829–840

    CAS  Google Scholar 

  10. Yang X, Yuan Y, Zhan CG, Liao F (2012) Drug Dev Res 73:66–72. doi:10.1002/ddr.20493

    Article  CAS  Google Scholar 

  11. Aoki Y, Ihara H, Nakamura H, Aoki T, Yoshida M (1992) Clin Chem 38:1350–1352

    CAS  Google Scholar 

  12. Kroll MH, Elin RJ (1994) Clin Chem 40:1996–2005

    CAS  Google Scholar 

  13. Cooper N, Khosravan R, Erdmann C, Fiene J, Lee JW (2006) J Chromatogr B Analyt Technol Biomed Life Sci 837:1–10. doi:10.1016/j.jchromb.2006.02.060

    Article  CAS  Google Scholar 

  14. Kock R, Delvoux B, Greiling H (1993) Eur J Clin Chem Clin Biochem 31:303–310

    CAS  Google Scholar 

  15. Wung WE, Howell SB (1980) Clin Chem 26:1704–1708

    CAS  Google Scholar 

  16. Czauderna M, Kowalczyk J (1997) J Chromatogr B Biomed Sci Appl 704:89–98

    Article  CAS  Google Scholar 

  17. McBurney A, Gibson T (1980) Clin Chim Acta 102:19–28

    Article  CAS  Google Scholar 

  18. Knudson EJ, Lau YC, Veening H, Dayton DA (1978) Clin Chem 24:686–691

    CAS  Google Scholar 

  19. Balcells J, Guada JA, Peiró JM, Parker DS (1992) J Chromatogr 575:153–157

    Article  CAS  Google Scholar 

  20. Kojima T, Nishina T, Kitamura M, Kamatani N, Nishioka K (1986) Clin Chem 32:287–290

    CAS  Google Scholar 

  21. Valik D, Jones JD (1997) Mayo Clin Proc 72:719–725

    Article  CAS  Google Scholar 

  22. Zhong H, Liang Q, Xia J, Hu P, Wang Y, Tong X, Luo G (2011) Chromatographia 73:149–155. doi:10.1007/s10337-010-1833-1

    Article  CAS  Google Scholar 

  23. Stentoft C, Vestergaard M, Løvendahl P, Kristensen NB, Moorby JM, Jensen SK (2014) J Chromatogr A 1356:197–210. doi:10.1016/j.chroma.2014.06.065

    Article  CAS  Google Scholar 

  24. Wilcox WR, Khalaf A, Weinberger A, Kippen I, Klinenberg JR (1972) Med Biol Eng 10:522–531

    Article  CAS  Google Scholar 

  25. Babić-Ivancić V, Jendrić M, Sostarić N, Opacak-Bernardi T, Zorić ST, Dutour Sikirić M (2010) Coll Antropol 34(Suppl 1):259–266

    Google Scholar 

  26. Brunnekreeft JW, Eidhof H, Gerrits J (1989) J Chromatogr 491:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Health of the Czech Republic, grant number 16-28040A and by a student project grant of Masaryk University MUNI/A/1056/2015. All rights reserved. The authors would like to thank to Martina Hanouskova for an excellent technical assistance, to Milan Dastych for providing human serum based control for determination of uric acid and to Jan Jurica for providing standards of caffeine and its metabolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Tomandl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This study was performed in compliance with the Ethical Committee of Faculty of Medicine, Masaryk University and was conducted in accordance with Helsinki declaration.

Informed consent

An informed consent was obtained from all study participants.

Additional information

Published in the topical collection Advances in Chromatography and Electrophoresis & Chiranal 2016 with guest editor Jan Petr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleskacova, A., Brejcha, S., Pacal, L. et al. Simultaneous Determination of Uric Acid, Xanthine and Hypoxanthine in Human Plasma and Serum by HPLC–UV: Uric Acid Metabolism Tracking. Chromatographia 80, 529–536 (2017). https://doi.org/10.1007/s10337-016-3208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3208-8

Keywords

Navigation